[planches/ex1110] centrale MP 2016 Soit \((E)\) l’équation différentielle : \((1-x)^3y''(x)=y(x)\).
[planches/ex1110]
Déterminer la structure de l’ensemble des solutions de \((E)\) sur \(\left]-\infty,1\right[\). Montrer que toutes ces solutions sont de classe \(\mathscr{C}^\infty\) sur \(\left]-\infty,1\right[\).
Soient \(y\) une solution de \((E)\) sur \(\left]-\infty,1\right[\) et, pour \(n\) dans \(\mathbf{N}\), \(a_n=\displaystyle{y^{(n)}(0)\over n\,!}\). Trouver une relation de récurrence satisfaite par \((a_n)_{n\geqslant 0}\).
Montrer que les solutions de \((E)\) sur \(\left]-\infty,1\right[\) sont développables en série entière au voisinage de 0.
Soit \(y\) la solution de \((E)\) sur \(\left]-\infty,1\right[\) telle que \(y(0)=0\), \(y'(0)=1\). Que dire de \(y(x)\) lorsque \(x\) tend vers 1 ?
[concours/ex3550] polytechnique M 1992 Soit \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}_+\) dans \(\mathbf{R}\). On suppose que les intégrales \(\displaystyle\int_0^{+\infty}ta(t)\,dt\) et \(\displaystyle\int_0^{+\infty}b(t)\,dt\) convergent absolument. On considère l’équation \((E)\) : \(x''+a(t)x=b(t)\). Soit \(x\) une solution de \((E)\). Montrer que \(x\) a une limite en \(+\infty\).
[concours/ex3550]
[planches/ex7169] centrale MP 2021 Soit \(f\in\mathscr{C}^1(\left[1,+\infty\right[,\mathbf{R}_+^*)\) telle que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{x\rightarrow+\infty}f'(x)=\alpha>0\).
[planches/ex7169]
Soit \(u\in\mathscr{C}^2(\left[1,+\infty\right[,\mathbf{R})\) bornée et solution de l’équation différentielle \(u''-\displaystyle{f'\over f}u'-{u\over f^2}=0\). On pose \(h=\displaystyle{u'\over f}\).
Montrer que \(u'(x)=O(1/x)\) lorsque \(x\rightarrow+\infty\).
Montrer que \(u^2\) admet une limite \(\ell\) en \(+\infty\).
Montrer que \(\ell=0\).
[planches/ex6022] polytechnique PC 2020 Soit \(f:\left[0,+\infty\right[\rightarrow\mathbf{R}\) dérivable, positive, décroissante et non intégrable sur \(\left[0,+\infty\right[\).
[planches/ex6022]
Soit \(y:\left[0,+\infty\right[\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^2\), non identiquement nulle et vérifiant \(y''+fy=0\).
Est-il possible d’avoir \(y\geqslant 0\) ? On pourra considérer \(E=fy^2+(y')^2\).
Soit \(t_0>0\) tel que \(y(t_0)=0\). Montrer qu’il existe \(\varepsilon>0\) tel que \(\forall t\in[t_0-\varepsilon,t_0+\varepsilon]\setminus\{t_0\}\), \(y(t)\neq 0\).
Déduire de la première question que \(y\) s’annule. Montrer que \(y\) admet une infinité de zéros. Comment interpréter le résultat d’un point de vue physique ?
[concours/ex1374] ens cachan MP 1998 Soient \(A\) et \(B\) dans \(\mathbf{R}^2\) euclidien, et \[E=\{u\in\mathscr{C}^1([0,1],\mathbf{R}^2)\mid u(0)=A,\ u(1)=B\}.\] Soit \(n\) une application de \(\mathbf{R}^2\) dans \(\mathbf{R}_+^*\), de classe \(C^2\). Pour \(u\in E\), on pose \(F(u)=\displaystyle\int_0^1n(u(t))\|u'(t)\|^2\,dt\). On suppose qu’il existe \(u_0\in E\) tel que \(F(u_0)=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits_{u\in E}F(u)\). Montrer que \(u_0\) est de classe \(C^2\) et trouver une équation différentielle vérifiée par \(u_0\).
[concours/ex1374]
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez une référence d'exercice dans un tableau, voire ne rien afficher