[oraux/ex3129] ens lyon MP 2011 Soient \(f\) et \(g\) deux fonctions de classe \(C^2\) de \(\mathbf{R}\) dans \(\mathbf{R}\) telle que \((f,g)\) soit libre. Donner une condition nécessaire et suffisante pour qu’existent deux fonctions \(a\) et \(b\) continues et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que : \(f''+af'+bf=0\) et \(g''+ag'+bg=0\).
[oraux/ex3129]
[oraux/ex4931] ens paris, ens lyon, ens cachan MP 2012 Soit \(a>4\). On note \(E\) l’ensemble des \(f\in{\cal C}^0([0,1],\mathbf{R})\) de classe \({\cal C}^1\) sur \(]0,1]\), telles que \(f'^2\) soit intégrable sur \(]0,1]\) et vérifiant en outre \(f(0)=0\) et \(f(1)=1\) ; pour \(f\in E\), on pose \(\phi(f)=\displaystyle\int_0^1 \left(af'^2(t)-\frac{f(t)^2}{t^2}\right)\,dt\).
[oraux/ex4931]
On suppose que \(\phi\) réalise son minimum sur \(E\) en \(f\). Donner une équation différentielle qu’il est plausible que \(f\) vérifie, et en déduire une valeur plausible de \(f\).
Pour \(h\in E\), on pose \(g(t)=\displaystyle\frac{h(t)}{f(t)}\). Exprimer \(\phi(h)\) en fonction de \(g\), et en déduire que \(\phi\) réalise son minimum sur \(E\). Préciser en quels points.
[planches/ex2502] centrale MP 2017 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}_+^*\). On considère l’équation différentielle \((\mathscr{E})\) : \(y''(x)=q(x)y(x)\).
[planches/ex2502]
Pour tout \(\alpha\in\mathbf{R}\), on note \(y_\alpha\) l’unique solution de \((\mathscr{E})\) vérifiant \(y_\alpha(0)=1\) et \(y_\alpha'(0)=\alpha\).
Montrer que \(\forall x\in\left]0,+\infty\right[\), \(y_0(x)y_0'(x)>0\). Montrer que \(y_0\) est strictement croissante.
Montrer que \(\forall\alpha\in\mathbf{R}\), \(\forall x\in\left]0,+\infty\right[\), \(y_\alpha(x)=y_0(x)\left(\displaystyle\int_0^x{\alpha\over y_0^2(t)}\,dt\right)\).
Montrer qu’il existe \(\alpha_1<0\) tel que l’on ait, pour \(\alpha\in\mathbf{R}\), l’équivalence entre « \(y_\alpha\) s’annule sur \(\mathbf{R}_+\) » et « \(\alpha<\alpha_1\) ». Calculer \(\alpha_1\).
[planches/ex1597] ens PSI 2017 Si \(x\) est un nombre réel, on note \(\{x\}=x-\lfloor x\rfloor\) la partie fractionnaire de \(x\). Soient \(\theta\in\mathbf{R}\setminus\mathbf{Q}\) et \(f:\mathbf{N}\rightarrow\left[0,1\right[\), \(n\mapsto\{n\theta\}\).
[planches/ex1597]
Montrer que \(f\) est injective.
Montrer que : \(\forall\varepsilon>0\), \(\exists(m,n)\in\mathbf{N}^2\), \(m\neq n\) et \(0<f(m)-f(n)<\varepsilon\).
En déduire que \(\{x\in\mathbf{R},\ \exists(a,b)\in\mathbf{Z}^2,\ x=a+b\theta\}\) est dense dans \(\mathbf{R}\).
On considère l’équation différentielle \((E)\) : \(y''+2y'+2y=f\) où \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) est non constante. On suppose que \((E)\) possède deux solutions périodiques \(y_1\) et \(y_2\) de périodes respectives \(T_1\) et \(T_2\). On se propose de montrer que \(y_1=y_2\).
Montrer que \(T_1/T_2\) est un nombre rationnel.
Montrer que la fonction \(y_2-y_1\) est bornée.
Montrer que \(y_2=y_1\).
[concours/ex4044] polytechnique pox P 1990 Soit \(f(x)=\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\over x}\).
[concours/ex4044]
Trouver une équation différentielle linéaire, d’ordre \(2\), à coefficients polynomiaux, satisfaite par \(f\).
Résoudre cette équation.
Sur les pages de résultats et selon les options d'affichage choisies, vous pouvez déployer les familles des exercices affichés