[planches/ex1079] ens paris, ens lyon, ens cachan, ens rennes MP 2016 Soient \(b\in\mathbf{R}_+^*\) et \(f\) une fonction continue définie sur \(\left[1,+\infty\right[\) telle que \(f(r)=O(r^{-b-2})\).
[planches/ex1079]
Soit \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{u'\over r}+{u\over r^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\) et préciser la vitesse de convergence.
Soient \(j>0\) de classe \(\mathscr{C}^1\) sur \(\left[1,+\infty\right[\) telle que \(j'\) tend vers 1 en \(+\infty\) et \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{j'\over j}u'+{u\over j^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\).
[planches/ex7887] polytechnique, espci PC 2022 Déterminer les réels \(\lambda\) pour lesquels il existe \(f:\mathbf{R}\longrightarrow\mathbf{R}\) deux fois dérivable telle que \(\forall x\in\mathbf{R}\), \(f''(x)+(\lambda-x^2)f(x)=0\), \(f(0)=0\), et \(f\) tende vers 0 en \(+\infty\).
[planches/ex7887]
Indication : Considérer \(g:x\longmapsto f(x)e^{x^2/2}\).
[oraux/ex3129] ens lyon MP 2011 Soient \(f\) et \(g\) deux fonctions de classe \(C^2\) de \(\mathbf{R}\) dans \(\mathbf{R}\) telle que \((f,g)\) soit libre. Donner une condition nécessaire et suffisante pour qu’existent deux fonctions \(a\) et \(b\) continues et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que : \(f''+af'+bf=0\) et \(g''+ag'+bg=0\).
[oraux/ex3129]
[oraux/ex2784] mines 2003 Soit \(\lambda>0\). On considère l’équation différentielle : \[(E)\qquad y''=-y+\lambda y'(1-y^2).\] On note \(\varphi:I\rightarrow\mathbf{R}\) une solution maximale de \((E)\). On pose \(g=\varphi^2+(\varphi')^2\).
[oraux/ex2784]
Montrer que \(g'\leqslant 2\lambda g\).
Soit \(a\in I\).
Soit \(x\in\left[a,+\infty\right[\cap I\). Montrer que \(g(x)\leqslant g(a)e^{2\lambda(x-a)}\).
Montrer que \(I\supset\left[a,+\infty\right[\).
[planches/ex0957] centrale MP 2013 Soient \(q\in\mathscr{C}^0(\left[a,+\infty\right[,\mathbf{R}_+)\) et \((E)\) l’équation différentielle \(y''=q(x)y\).
[planches/ex0957]
Soit \(f\) une solution de \((E)\) telle que \(f(a)>0\) et \(f'(a)>0\). Montrer que \(f\) et \(f'\) sont strictement positives et que \(f\) tend vers \(+\infty\) en \(+\infty\).
Soient \(u\) et \(v\) les solutions de \((E)\) telles que \(u(a)=1\), \(u'(a)=0\), \(v(a)=0\), \(v'(a)=1\). Calculer \(u'v-uv'\). Montrer que, sur \(\left]a,+\infty\right[\), \(u/v\) et \(u'/v'\) sont monotones de monotonies opposées. Montrer que \(u/v\) et \(u'/v'\) tendent en \(+\infty\) vers la même limite réelle.
Montrer qu’il existe une unique solution \(g\) de \((E)\), strictement positive, telle que \(g(a)=1\) et telle que \(g\) décroisse sur \(\left[a,+\infty\right[\).
Déterminer \(g\) lorsque \(q(x)=\displaystyle{1\over x^4}\) sur \(\left[1,+\infty\right[\). On pourra poser \(y(x)=xz(1/x)\).
Sur les pages de résultats et selon les options d'affichage choisies, vous pouvez déployer les familles des exercices affichés