[planches/ex0923] ens PC 2013 Soient \(\varphi\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) et \(\alpha\in\mathbf{R}\). Résoudre \[(E)\ :\quad(\varphi(x)-\alpha)u''(x)-\varphi''(x)u(x)=0\] lorsque \(\varphi=\alpha\) possède zéro ou une solution.
[planches/ex0923]
Indication : Déterminer une solution simple de \((E)\).
[concours/ex5308] ens paris MP 2007
[concours/ex5308]
Soit \(x\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R})\) convexe, minorée et décroissante. Étudier la limite de \(t\mapsto tx'(t)\) lorsque \(t\rightarrow+\infty\).
Soient \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R}_+)\) et \(x\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R}_+^*)\) décroissante telles que \(x''=qx\). Montrer : \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{+\infty}x=0\Leftrightarrow\displaystyle\int_0^{+\infty}tq(t)\,dt=+\infty\).
[concours/ex3119] polytechnique P 1993
[concours/ex3119]
Soit \(g\), \(k:[a,b]\rightarrow\mathbf{R}\) avec \(g\) continue et \(k\) de classe \(C^1\) ne s’annulant pas sur \([a,b]\) et \[(E)\quad(ky')'+gy=0.\]
Montrer que l’ensemble des zéros d’une solution non nulle de \((E)\) est fini.
Soit \(y_1\) et \(y_2\) deux solutions indépendantes de \((E)\). Montrer que si \(x_1\) et \(x_2>x_1\) sont deux zéros de \(y_1\), alors \(y_2\) s’annule sur \(\left]x_1,x_2\right[\).
Soit \(g_1\), \(g_2:[a,b]\rightarrow\mathbf{R}\) continues telles que \(g_1<g_2\), \[(E_j)\quad(ky')'+g_jy=0\quad(j=1,2)\] et \(u\) une solution non nulle de \(E_1\) s’annulant en \(x_1\) et \(x_2>x_1\). Montrer que toute solution de \((E_2)\) s’annule sur \(\left]x_1,x_2\right[\).
[oraux/ex3002] ens paris MP 2009 Soit \(E\) l’ensemble des fonctions complexes de classe \(C^\infty\) sur \(\mathbf{R}^2\), \(2\pi\)-périodiques par rapport à la première variable. On se donne une fonction complexe \(f_0\) de classe \(C^\infty\) sur \(\mathbf{R}\) et \(2\pi\)-périodique.
[oraux/ex3002]
Trouver \(f\in E\) telle que : \(\displaystyle{\partial f\over\partial t}(x,t)=-i\displaystyle{\partial^2f\over\partial x^2}(x,t)\) et \(\forall x\in\mathbf{R}\), \(f(x,0)=f_0(x)\).
Expliciter une constante \(C\) telle que : \[\int_0^{2\pi}\!\!\int_0^{2\pi}|f(x,t)|^4\,dx\,dt\leqslant C\left(\int_0^{2\pi}|f_0(x)|^2\,dx\right)^{\!2}.\]
[oraux/ex3077] ens cachan MP 2010 Soient \(T\in\mathbf{R}_+^*\) et \(a\in\mathscr{C}^1(\mathbf{R},\mathbf{R})\) une fonction \(T\)-périodique. On pose \(a_0=\displaystyle{1\over T}\int_0^Ta(x)\,dx\). Pour \(\varepsilon>0\), soit \(a_\varepsilon:x\mapsto a(x/\varepsilon)\). Soit \(\varphi\in\mathscr{C}^1([0,1],\mathbf{R})\).
[oraux/ex3077]
Montrer que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{\varepsilon\rightarrow0^+}\displaystyle\int_0^1a_\varepsilon(u)\varphi(u)\, du=a_0\displaystyle\int_0^1\varphi(u)\,du\).
On suppose désormais qu’il existe \(\alpha>0\) tel que \(\forall x\in\mathbf{R}\), \(a(x)\geqslant\alpha\). Soit \(f\in\mathscr{C}^0([0,1],\mathbf{R})\).
Soit \(\varepsilon>0\). Montrer qu’il existe une unique \(u_\varepsilon\in\mathscr{C}^2([0,1],\mathbf{R})\) solution du problème \((a_\varepsilon u')'=f\) et \(u(0)=u(1)=0\).
Que dire de \(u_\varepsilon\) lorsque \(\varepsilon\rightarrow0^+\) ?
Vous pouvez signaler le nombre d'énoncés visibles sur chaque page de résultats