[planches/ex0957] centrale MP 2013 Soient \(q\in\mathscr{C}^0(\left[a,+\infty\right[,\mathbf{R}_+)\) et \((E)\) l’équation différentielle \(y''=q(x)y\).
[planches/ex0957]
Soit \(f\) une solution de \((E)\) telle que \(f(a)>0\) et \(f'(a)>0\). Montrer que \(f\) et \(f'\) sont strictement positives et que \(f\) tend vers \(+\infty\) en \(+\infty\).
Soient \(u\) et \(v\) les solutions de \((E)\) telles que \(u(a)=1\), \(u'(a)=0\), \(v(a)=0\), \(v'(a)=1\). Calculer \(u'v-uv'\). Montrer que, sur \(\left]a,+\infty\right[\), \(u/v\) et \(u'/v'\) sont monotones de monotonies opposées. Montrer que \(u/v\) et \(u'/v'\) tendent en \(+\infty\) vers la même limite réelle.
Montrer qu’il existe une unique solution \(g\) de \((E)\), strictement positive, telle que \(g(a)=1\) et telle que \(g\) décroisse sur \(\left[a,+\infty\right[\).
Déterminer \(g\) lorsque \(q(x)=\displaystyle{1\over x^4}\) sur \(\left[1,+\infty\right[\). On pourra poser \(y(x)=xz(1/x)\).
[concours/ex3343] centrale M 1993 On considère l’équation différentielle \((E)\) : \[y''+y'+p(x)y=0.\] Trouver \(p(x)\) pour que \((E)\) admette deux solutions \(y_1\), \(\mu y_2\) non identiquement nulles et telles que \(y_2=y_1^2\). Résoudre alors \((E)\).
[concours/ex3343]
[concours/ex3550] polytechnique M 1992 Soit \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}_+\) dans \(\mathbf{R}\). On suppose que les intégrales \(\displaystyle\int_0^{+\infty}ta(t)\,dt\) et \(\displaystyle\int_0^{+\infty}b(t)\,dt\) convergent absolument. On considère l’équation \((E)\) : \(x''+a(t)x=b(t)\). Soit \(x\) une solution de \((E)\). Montrer que \(x\) a une limite en \(+\infty\).
[concours/ex3550]
[equadiff/ex0156] On considère l’équation différentielle linéaire du second ordre : \[(E)\qquad a(x)y''+b(x)y'+c(x)y=f(x),\] où \(a\), \(b\), \(c\) et \(f\) sont continues sur le même domaine de \(\mathbf{R}\), \(a\) ne s’annulant pas sur ce domaine. Soit \(y_1\) une solution particulière de l’équation homogène associée \((E')\). On effectue le changement de fonction inconnue \(y=y_1z\). Reporter cette égalité dans \((E)\) et démontrer que l’on obtient une équation du premier ordre par rapport à \(z'\). En déduire une méthode d’intégration de \((E)\).
[equadiff/ex0156]
Application : intégrer sur \(\mathscr{D}=\mathbf{R}_+^*\) l’équation : \[x^3y''+xy'-y=-e^{1/x},\] en remarquant que \(y_1:x\mapsto x\) est solution de l’équation homogène associée.
[oraux/ex3148] polytechnique, espci PC 2011 Soit \((E)\) l’équation différentielle \(y''(x)+\left(1-e^{-x^2}\right)y(x)=0\).
[oraux/ex3148]
Montrer que les solutions de \((E)\) sont bornées sur \(\mathbf{R}\).
Soit \(y\) une solution non nulle de \((E)\). Montrer que \(y\) s’annule au moins une fois sur tout intervalle de la forme \([a,a+\pi]\) avec \(a\in\mathbf{R}\).
Vous pouvez choisir le type d'affichage de la liste des résultats : tableau ou liste