[oraux/ex3170] centrale MP 2011 (avec Maple)
[oraux/ex3170]
Maple
Soit \((E_\lambda)\) l’équation \(-y''+x^2y=\lambda y\).
Tracer les solutions pour \(\lambda\in\{1,2\}\) pour chacune des conditions initiales suivantes : \(\{y(0)=0,\ y'(0)=1\}\) et \(\{y(0)=1,\ y'(0)=0\}\).
On étude \((E_1)\). Chercher les valeurs de \(\sigma\) telles que \(t\mapsto e^{at^2}\) soit solution. En déduire toutes les solutions de \((E_1)\) à l’aide de \(\varphi:x\mapsto\displaystyle\int_0^xe^{t^2}\,dt\). Chercher avec Maple un équivalent de \(\varphi\) en \(+\infty\). Quelles sont les solutions bornées de \((E_1)\) ?
Soit \(y\) une solution de \((E_\lambda)\). Déterminer une équation vérifiée par \(u:x\mapsto y(x)e^{x^2/2}\). Montrer que ces fonctions \(u\) sont développables en série entière, et qu’il en est de même de toutes les solutions de \((E_\lambda)\).
[planches/ex1597] ens PSI 2017 Si \(x\) est un nombre réel, on note \(\{x\}=x-\lfloor x\rfloor\) la partie fractionnaire de \(x\). Soient \(\theta\in\mathbf{R}\setminus\mathbf{Q}\) et \(f:\mathbf{N}\rightarrow\left[0,1\right[\), \(n\mapsto\{n\theta\}\).
[planches/ex1597]
Montrer que \(f\) est injective.
Montrer que : \(\forall\varepsilon>0\), \(\exists(m,n)\in\mathbf{N}^2\), \(m\neq n\) et \(0<f(m)-f(n)<\varepsilon\).
En déduire que \(\{x\in\mathbf{R},\ \exists(a,b)\in\mathbf{Z}^2,\ x=a+b\theta\}\) est dense dans \(\mathbf{R}\).
On considère l’équation différentielle \((E)\) : \(y''+2y'+2y=f\) où \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) est non constante. On suppose que \((E)\) possède deux solutions périodiques \(y_1\) et \(y_2\) de périodes respectives \(T_1\) et \(T_2\). On se propose de montrer que \(y_1=y_2\).
Montrer que \(T_1/T_2\) est un nombre rationnel.
Montrer que la fonction \(y_2-y_1\) est bornée.
Montrer que \(y_2=y_1\).
[oraux/ex2981] centrale MP 2008 (avec Maple)
[oraux/ex2981]
Résoudre \(y''+\displaystyle{y\over x^2}=0\) sur \(\left[1,+\infty\right[\) à l’aide de Maple. Existe-t-il des solutions bornées ?
Soit \((E)\) : \(y''+\displaystyle{y\over x^2+4x+3}=0\). On se donne une solution \(f\) bornée de \((E)\) sur \(\left[1,+\infty\right[\). Montrer que \(f'\) admet une limite nulle en \(+\infty\). Existe-t-il des solutions non bornées sur \(\left[1,+\infty\right[\) ?
[oraux/ex3148] polytechnique, espci PC 2011 Soit \((E)\) l’équation différentielle \(y''(x)+\left(1-e^{-x^2}\right)y(x)=0\).
[oraux/ex3148]
Montrer que les solutions de \((E)\) sont bornées sur \(\mathbf{R}\).
Soit \(y\) une solution non nulle de \((E)\). Montrer que \(y\) s’annule au moins une fois sur tout intervalle de la forme \([a,a+\pi]\) avec \(a\in\mathbf{R}\).
[planches/ex9268] ens saclay, ens rennes MP 2023 On considère l’équation différentielle \((D_{\lambda})\) : \(y'' + (\lambda-r)y =0\) avec \(\lambda \in \mathbb{R}\), \(r \in\mathscr{C}^{\infty}(I, \mathbb{R})\), où \(I\) est un intervalle contenant \([0, 1]\).
[planches/ex9268]
On considère \(E_{\lambda}\) l’espaces des solutions \(y\) de \((D_{\lambda})\) telles que \(y(0) = 0\), \(y(1) = 0\).
Quelles sont les dimensions possibles de \(E_{\lambda}\) ?
Caractériser le cas \(\mathop{\mathchoice{\hbox{dim}}{\hbox{dim}}{\mathrm{dim}}{\mathrm{dim}}}\nolimits(E_{\lambda}) = 1\). (On souhaite une condition portant sur \(y_{\lambda}\), solution du problème de Cauchy \((D_{\lambda})\), \(y_{\lambda}(0) = 0\), \(y_{\lambda}'(0) = 1\).)
Montrer que, à \(r\) fixé, les \(E_{\lambda}\) sont orthogonaux pour le produit scalaire \(\langle f, g \rangle = \displaystyle\int_{0}^{1} fg\).
On note \(N_\lambda\) le nombre de zéros de \(y_{\lambda}\) sur \([0, 1]\). Pourquoi est-il fini ?
Calculer \(N_{\lambda}\) dans le cas \(r = 0\), \(\lambda > 0\).
Dans le cas général, étudier le comportement de \(N_{\lambda}\).
Le clic droit sur un énoncé ou sur une référence d'exercice permet d'examiner cet exercice sur une page dédiée