[planches/ex7887] polytechnique, espci PC 2022 Déterminer les réels \(\lambda\) pour lesquels il existe \(f:\mathbf{R}\longrightarrow\mathbf{R}\) deux fois dérivable telle que \(\forall x\in\mathbf{R}\), \(f''(x)+(\lambda-x^2)f(x)=0\), \(f(0)=0\), et \(f\) tende vers 0 en \(+\infty\).
[planches/ex7887]
Indication : Considérer \(g:x\longmapsto f(x)e^{x^2/2}\).
[concours/ex3119] polytechnique P 1993
[concours/ex3119]
Soit \(g\), \(k:[a,b]\rightarrow\mathbf{R}\) avec \(g\) continue et \(k\) de classe \(C^1\) ne s’annulant pas sur \([a,b]\) et \[(E)\quad(ky')'+gy=0.\]
Montrer que l’ensemble des zéros d’une solution non nulle de \((E)\) est fini.
Soit \(y_1\) et \(y_2\) deux solutions indépendantes de \((E)\). Montrer que si \(x_1\) et \(x_2>x_1\) sont deux zéros de \(y_1\), alors \(y_2\) s’annule sur \(\left]x_1,x_2\right[\).
Soit \(g_1\), \(g_2:[a,b]\rightarrow\mathbf{R}\) continues telles que \(g_1<g_2\), \[(E_j)\quad(ky')'+g_jy=0\quad(j=1,2)\] et \(u\) une solution non nulle de \(E_1\) s’annulant en \(x_1\) et \(x_2>x_1\). Montrer que toute solution de \((E_2)\) s’annule sur \(\left]x_1,x_2\right[\).
[oraux/ex3108] centrale MP 2010 Soit \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{C})\) telle que \(t\mapsto tq(t)\) est intégrable sur \(\mathbf{R}_+\).
[oraux/ex3108]
Justifier l’existence de \(a\in\mathbf{R}_+\) tel que \(\displaystyle\int_a^{+\infty}|tq(t)|\,dt\leqslant 1/2\).
Montrer qu’il existe une suite \((y_n)_{n\geqslant 0}\) de fonctions continues et bornées de \(\left[a,+\infty\right[\) vers \(\mathbf{C}\) telles que : \(y_0=1\) et \(\forall n\in\mathbf{N}^*\), \(\forall x\in\left[a,+\infty\right[\), \(y_n(x)=1+\displaystyle\int_x^{+\infty}(t-x)q(t)y_{n-1}(t)\,dt\).
Montrer que \((y_n)\) converge uniformément vers une solution de \((E_a)\) : \(y''(t)+q(t)y(t)=0\), \(t\geqslant a\).
Montrer que l’équation \((E_0)\) : \(y''(t)+q(t)y(t)=0\), \(t\geqslant 0\), possède une solution \(Y\) telle que \(Y(t)\rightarrow1\) quand \(t\rightarrow+\infty\).
En déduire le comportement à l’infini des solutions de \((E_0)\) selon qu’elles sont, ou ne sont pas, bornées.
[planches/ex1056] mines MP 2015 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+)\) et \(x\) une solution strictement positive de \(x''+q(t)x=0\). On pose \(f=x'/x\).
[planches/ex1056]
Donner une équation différentielle satisfaite par \(f\).
Montrer que \(f\) est décroissante positive.
Que peut-on dire de l’intégrabilité de \(q\) ?
[oraux/ex5092] polytechnique MP 2012 Soient \(E={\cal C}^2([0,1],\mathbf{R})\) et \(Q:u\in E\mapsto\displaystyle\int_0^1 e^x\left( u(x)^2+u'(x)^2\right)\,dx\).
[oraux/ex5092]
Soient \(u,v\in E\) et \(\Phi_{u,v}:t\in\mathbf{R}\mapsto Q(u+tv)\). À quelle condition \(\Phi_{u,v}\) admet-elle un minimum en \(t_0\) ?
On fixe \(a\) et \(b\) dans \(\mathbf{R}\) et on note \(L=\left\{ u\in E,\; u(0)=a\mbox{ et }u(1)=b\right\}\). La restriction de \(Q\) à \(L\) présente-t-elle un minimum ? Si oui, est-il unique ?
Le clic gauche sur un énoncé ou une référence d'exercice rajoute (ou enlève) cet exercice à la liste des exercices sélectionnés