[concours/ex3679] mines M 1992 Montrer que toutes les solutions de \(y''+e^xy=0\) sont bornées sur \(\mathbf{R}_+\).
[concours/ex3679]
[equadiff/ex0157] On considère l’équation différentielle linéaire du second ordre : \[(E)\qquad a(x)y''+b(x)y'+c(x)y=f(x),\] où \(a\), \(b\), \(c\) et \(f\) sont continues sur le même domaine de \(\mathbf{R}\), \(a\) ne s’annulant pas sur ce domaine. On en cherche une solution sous la forme d’un produit de deux fonctions \(u\) et \(v\), i. e. \(y=uv\).
[equadiff/ex0157]
Déduire de cette égalité que \(u\) vérifie une équation différentielle : \[a_2u''+b_2u'+c_2u=f(x),\] dont les coefficients dépendent de \(x\) et de la fonction \(v\).
On choisit alors \(v\) pour pour que cette équation ne contienne pas \(u'\). En déduire une méthode d’intégration de \((E)\).
Application : résoudre sur \(\mathbf{R}_+^*\) l’équation différentielle : \[xy''+2y'-xy=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x,\] en remarquant qu’on peut prendre \(v(x)=\displaystyle{1\over x}\).
[oraux/ex3082] polytechnique MP 2010 Soit \(f:\mathbf{R}\rightarrow\mathbf{R}\) une solution non identiquement nulle de l’équation différentielle \((E)\) : \(y''+e^ty=0\). Montrer que \(f\) admet une infinité dénombrable de zéros.
[oraux/ex3082]
[planches/ex9340] ens PSI 2023 Soient \(a>0\) et \(q \in\mathscr{C}^2(\left[a,+\infty\right[,\mathbf{R}^{+*})\) telle que \(\displaystyle\int_a^{+\infty} \sqrt {q(t)}\,{\rm d}t = +\infty\).
[planches/ex9340]
Soit \((E)\) l’équation différentielle \(y''+qy=0\)
Soient \(y_1\) et \(y_2\) deux fonctions de classe \(\mathscr{C}^1\) qui n’ont pas de zéros en commun. On pose \(\Phi = y_1 + iy_2\) et \(\Phi (a) = r_0e^{i\theta_0}\).
Montrer que \(\forall x \geqslant a\), \(\Phi (x) = e^{\Psi(x)}\) où \(\Psi(x)=\displaystyle\int_a^x\frac{\Phi'(t)}{\Phi(t)} \,{\rm d}t + \mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits (r_0) + i\theta_0\).
Montrer que l’on peut écrire \(y_1(x) =r(x)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\theta(x))\) et \(y_2(x) =r(x) \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta(x))\) où \(r(x) = \sqrt{y_1^2(x) + y_2^2(x)}\) et \(\theta (x) = \theta_0 +\displaystyle\int_a^x \displaystyle\frac{y_1y'_2-y_2y'_1}{y_1^2+ y_2^2}\).
On pose \(x \mapsto f(x) =\displaystyle\int_a^{x} \sqrt {q(t)}\,{\rm d}t\).
Montrer que \(f\) réalise une bijection de \(\left[a,+\infty\right[\) sur \(\mathbf{R}^+\).
Soit \(y\) une solution de \((E)\), non identiquement nulle. On pose \(Y = y\mathbin{\circ} f^{-1}\). Montrer que \(Y'' +vY' +Y =0\) où \(v~: t \mapsto\displaystyle\frac{q'(f^{-1}(t))}{2 (q(f^{-1}(t)))^{3/2}}\).
Montrer que \(Y\) et \(Y'\) n’ont pas de zéro en commun et que l’on peut écrire \(Y = r \mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits (\theta)\) et \(Y'= r \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta)\) où \(r\), \(\theta\) sont des fonctions de classe \(\mathscr{C}^1\).
Montrer que \((r^2)' = -2v r^2 \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2(\theta)\). En déduire que \(y\) et \(y'\) sont bornées.
[planches/ex9503] polytechnique MP 2023 Soient \(q_1\), \(q_2\) deux fonctions continues de \(\mathbf{R}^+\) dans \(\mathbf{R}\) telles que \(q_1\leqslant q_2\). On considère l’équation différentielle \((E_i)\) : \(y''+q_i(t)\, y=0\) pour \(i\in\{1,2\}\).
[planches/ex9503]
Soient \(y_1\), \(y_2\) des solutions respectives de \((E_1)\) et \((E_2)\) sur \(I\). Soient \(\alpha<\beta\) deux zéros de \(y_1\). Montrer que \(y_2\) s’annule dans \([\alpha,\beta]\).
Soient \(q:\mathbf{R}^+\rightarrow\mathbf{R}\) continue, \(m\), \(M\) deux réels strictement positifs tels que \(m\leqslant q\leqslant M\). Soient \(\alpha<\beta\) deux zéros consécutifs d’une solution non nulle \(x\) de \(y''+q(t)\,y=0\).
Montrer que les zéros de \(x\) forment une suite strictement croissante \((t_n)_{n\in\mathbf{N}}\).
Montrer que \(\displaystyle\frac{\pi}{\sqrt{M}}\leqslant t_{n+1}-t_n\leqslant\frac{\pi}{\sqrt{m}}\) pour tout \(n\in\mathbf{N}\).
Vous pouvez choisir la fonte des exercices lors de la compilation des PDF