[oraux/ex3142] polytechnique MP 2011 Soit \(a\) dans \(\left]0,\pi\right[\).
[oraux/ex3142]
Déterminer \(y\) de classe \(C^2\) de \(\mathbf{R}\) dans \(\mathbf{R}\) telle que : \(y(0)=a\), \(y'(0)=0\), \(y''=-y\).
Soit \(x\) la solution maximale du problème de Cauchy \(x''=-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\), \(x(0)=a\), \(x'(0)=0\). Montrer que \(x\) est définie sur \(\mathbf{R}\) et bornée par \(a\) sur \(\mathbf{R}\).
Trouver \(C>0\) telle que : \(\forall t\in\mathbf{R}\), \(|x(t)-y(t)|\leqslant Ct^2\).
[planches/ex0932] polytechnique MP 2013 Soient \(a\in\left]0,\pi\right[\) et \(x\) la solution maximale du problème de Cauchy : \(x''=-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x)\), \(x(0)=a\), \(x'(0)=0\). Montrer que \(x\) est définie sur \(\mathbf{R}\) et \(\forall t\in\mathbf{R}\), \(|x(t)|\leqslant a\).
[planches/ex0932]
[planches/ex1104] mines MP 2016 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^1\) telle que \(\forall x\in\mathbf{R}_+\), \(q(x)>0\) et \(q'(x)>0\). Montrer que les solutions de \(y''+qy=0\) sont bornées sur \(\mathbf{R}_+\).
[planches/ex1104]
Indication : Multiplier par \(y'/q\).
[planches/ex3377] polytechnique, espci PC 2018 Soit \(q\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) telle que \(q>0\), \(q'>0\). Montrer que les solutions de l’équation différentielle \(y''+qy=0\) sont bornées sur \(\mathbf{R}_+\).
[planches/ex3377]
[planches/ex8133] mines MP 2022 Soit \(f:\mathbf{R}_+\longrightarrow\mathbf{R}_+\) continue. On se donne \(c\geqslant 0\), on pose \(F:x\longmapsto c+\displaystyle\int_0^xf(t)\,dt\) et on suppose que \(\forall x\in\mathbf{R}_+\), \(xf(x)\leqslant F(x)\).
[planches/ex8133]
Étudier les variations de \(x\longmapsto\displaystyle{F(x)\over x}\) sur \(\mathbf{R}_+^*\) et en déduire que \(f\) est bornée.
Soit \(g\) une solution sur \(\mathbf{R}_+\) de l’équation différentielle \(y''+xy=0\). En s’intéressant à \(g^2\), montrer que \(g\) est bornée.
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez un énoncé, voire ne rien afficher