[oraux/ex3042] mines PC 2009 Soient \(\varphi\in\mathscr{C}^0([a,b],\mathbf{R})\), \(k\in\mathbf{R}_+^*\) et \((E)\) : \(y''+\varphi(x)y'-ky=0\). On suppose que \(f\) est une solution de \((E)\) telle que \(f(a)=f(b)=0\). Montrer que \(f\) est identiquement nulle.
[oraux/ex3042]
[oraux/ex2942] centrale PC 2006 Soient \(E=\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) et, pour \(f\in E\), \(\mu(f)\) l’élément de \(E\) défini par : \[\forall x\in\mathbf{R},\quad\mu(f)(x)=f'(x)-xf(x).\]
[oraux/ex2942]
Montrer que \(\mu\) est un endomorphisme de \(E\), déterminer son noyau.
L’application \(\mu\) est-elle surjective ?
Si \(g\in E\), déterminer \(\mu^{-1}(g)\).
Déterminer \(\mu\mathbin{\circ}\mu\).
Résoudre : \(y''-2xy'+(x^2-1)y=0\).
Si \(n\in\mathbf{N}^*\), résoudre \(\mu^{(n)}(f)=0\).
[concours/ex5477] polytechnique MP 2007 Soient \(f\in\mathscr{C}^1(\left]0,+\infty\right[,\mathbf{R})\) et \(g\) une solution de \((E)\) : \(y''+fy=0\), non identiquement nulle.
[concours/ex5477]
Montrer que les zéros de \(g\) sont isolés. Dans la suite, \(x_1\) et \(x_2\) sont deux zéros consécutifs de \(g\) vérifiant \(x_1<x_2\).
Montrer, si \(x\in[x_1,x_2]\) : \[\hskip-1cm(x_2-x)\int_{x_1}^x(t-x_1)f(t)g(t)\,dt+ (x-x_1)\int_x^{x_2}(x_2-t)f(t)g(t)\,dt =(x_2-x_1)g(x).\]
En déduire une minoration de \(\displaystyle\int_{x_1}^{x_2}|f(t)|\,dt\).
[oraux/ex3133] ens lyon MP 2011 Soit \(\varphi\) une solution maximale non identiquement nulle de \(y''+e^xy=0\).
[oraux/ex3133]
Montrer que \(\varphi\) est définie sur \(\mathbf{R}\).
Montrer que l’on peut ranger l’ensemble des zéros de \(\varphi\) sur \(\mathbf{R}_+\) en une suite strictement croissante \((x_n)_{n\in\mathbf{N}}\).
Montrer que \(x_{n+1}-x_n\rightarrow0\) quand \(n\rightarrow+\infty\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow+\infty\).
[equadiff/ex0881] Soit \((E)\) : \(y''+ay'+by=0\) une équation différentielle linéaire du deuxième ordre homogène à coefficients non forcément constants, de classe \(C^1\) sur l’intervalle \(I\).
[equadiff/ex0881]
Écrire l’équation \((E')\) transformé de \((E)\) en posant \(y=uz\).
Déterminer une équation différentielle simple que doit vérifier la fonction \(u\) de sorte de \((E')\) ne contienne plus de terme en \(z'\), et résoudre cette équation en \(u\).
Montrer que \((E')\) peut se mettre sous la forme : \(z''=cz\), et exprimer la fonction \(c\) en fonction de \(a\) et \(b\).
Déterminer \(u\) et \(c\) quand \(a\) et \(b\) sont constants.
Le clic droit sur un énoncé ou sur une référence d'exercice permet d'examiner cet exercice sur une page dédiée