[concours/ex5477] polytechnique MP 2007 Soient \(f\in\mathscr{C}^1(\left]0,+\infty\right[,\mathbf{R})\) et \(g\) une solution de \((E)\) : \(y''+fy=0\), non identiquement nulle.
[concours/ex5477]
Montrer que les zéros de \(g\) sont isolés. Dans la suite, \(x_1\) et \(x_2\) sont deux zéros consécutifs de \(g\) vérifiant \(x_1<x_2\).
Montrer, si \(x\in[x_1,x_2]\) : \[\hskip-1cm(x_2-x)\int_{x_1}^x(t-x_1)f(t)g(t)\,dt+ (x-x_1)\int_x^{x_2}(x_2-t)f(t)g(t)\,dt =(x_2-x_1)g(x).\]
En déduire une minoration de \(\displaystyle\int_{x_1}^{x_2}|f(t)|\,dt\).
[planches/ex1074] tpe PSI 2015 Soient \(E=\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) et \(\Phi:E\rightarrow E\) qui à \(f\) associe \(g\) telle que \(\forall x\in\mathbf{R}\), \(g(x)=f'(x)-xf(x)\). Montrer que \(\Phi\) est un endomorphisme de \(E\). Déterminer \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits\Phi\), puis \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits\Phi\mathbin{\circ}\Phi\).
[planches/ex1074]
[oraux/ex3075] ens lyon MP 2010 Soient \(q\) une application continue périodique et non identiquement nulle de \(\mathbf{R}\) dans \(\mathbf{R}_+\), \(y\) une solution de \(y''+qy=0\). Montrer que \(y\) s’annule une infinité de fois.
[oraux/ex3075]
[oraux/ex3012] polytechnique MP 2009 Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\) et \(f\in\mathscr{C}^0([a,b],\mathbf{R})\). On suppose qu’il existe \(u\) dans \(\mathscr{C}^2([a,b],\mathbf{R})\) non identiquement nulle telle que : \(u''+fu=0\) et \(u(a)=u(b)=0\). Montrer : \(\displaystyle\int_a^b|f(t)|\,dt\geqslant(b-a)/4\).
[oraux/ex3012]
[oraux/ex5392] mines MP 2012 Soit \(f\,:\;\mathbf{R}^{+*}\to\mathbf{R}\) continue. On considère l’équation différentielle \((E)\) \(y''=f\,y\).
[oraux/ex5392]
Montrer que les zéros des solutions non nulles sont isolés.
Soient \(\alpha\) et \(\beta\) deux zéros consécutifs d’une solution non nulle de \((E)\). Montrer : \[\int_\alpha^\beta\left|f(t)\right|\,dt>\frac4{\beta-\alpha}.\]
Sur les pages de résultats et selon les options d'affichage choisies, vous pouvez déployer les familles des exercices affichés