[concours/ex4169] mines M 1990 Soit \(f\in\mathscr{C}(\mathbf{R}_+,\mathbf{R})\) telle que \(\displaystyle\int_0^{+\infty}\left|f\right|\) converge. L’équation \(y''+fy=0\) a-t-elle toutes ses solutions bornées ?
[concours/ex4169]
[oraux/ex2800] centrale 2003 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) une application continue et intégrable sur \(\mathbf{R}_+\). Soit \((E)\) l’équation différentielle \(y''+qy=0\).
[oraux/ex2800]
Si \(y\) est une solution bornée de \((E)\), que dire de \(y'\) en \(+\infty\) ?
Montrer qu’il existe des solutions de \((E)\) non bornées.
[planches/ex6826] mines MP 2021 Soient \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \(S\) l’ensemble des solutions de \(y''+fy=0\). On suppose \(f\) intégrable sur \(\mathbf{R}\).
[planches/ex6826]
Soient \(y_1\), \(y_2\in S\) et \(w=y_1y_2'-y_1'y_2\). Que peut-on dire de \(w\) ?
Montrer que \(S\) contient des fonctions non bornées.
[oraux/ex3071] tpe PC 2009 Résoudre : \(x^2y''+axy'+by=0\).
[oraux/ex3071]
[examen/ex1790] mines MP 2024 Soit \((E)\) l’équation différentielle \(ax^2y''+bxy'+cy=0\) sur \(\mathbf{R}^{+*}\).
[examen/ex1790]
Résoudre \((E)\) en utilisant le changement de variable \(t=\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x\).
Résoudre \(x^2y''+xy'+y=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(a\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x)\).
Vous pouvez choisir le type d'affichage de la liste des résultats : tableau ou liste