[planches/ex1026] centrale PSI 2014 Soient \(a\), \(b\in\mathbf{R}\) tels que \(a<b\) et \(f\), \(g\in\mathscr{C}^0([a,b],\mathbf{R})\). On suppose \(f>0\). On considère l’équation différentielle \((E)\) : \(y''-fy=g\).
[planches/ex1026]
Montrer que l’équation homogène associée à \((E)\) possède deux solutions \(u\) et \(v\) caractérisées par : \(u(a)=0\), \(u'(a)=1\) et \(v(b)=0\), \(v'(b)=1\).
Montrer que \((E)\) possède au plus une solution s’annulant en \(a\) et en \(b\).
Indication : Considérer \(y_1\) et \(y_2\) deux telles solutions et \(h=y_2-y_1\). Remarquer que \(h^2\) est convexe.
Montrer que \((E)\) possède une solution s’annulant en \(a\) et \(b\) et en donner une expression en fonction de \(u\), \(v\), \(f\) et \(g\).
[planches/ex1057] mines MP 2015 Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\), \(f\) et \(g\) dans \(\mathscr{C}^0([a,b],\mathbf{R})\) avec \(f\leqslant 0\).
[planches/ex1057]
Soit \(z\in\mathscr{C}^2([a,b],\mathbf{R})\) telle que \(z''+fz=0\). Étudier la convexité de \(z^2\).
Montrer que le problème \(y''+fy=g\), \(y(a)=y(b)=0\) possède une et une seule solution.
[equadiff/ex0093] Soient \(a(t)\) et \(b(t)\) deux fonctions continues sur \(I\) et \[(E)\quad x''+a(t)x'+b(t)x=0\,.\] Montrer que, si \(u(t)\) est une solution non identiquement nulle de \((E)\), le nombre de zéros de \(u\) sur tout segment inclus dans \(I\) est fini.
[equadiff/ex0093]
Indication : on montrera que les zéros de \(u\) sont isolés.
[oraux/ex4921] ens paris MP 2012 Soit \(f \in{\cal C}^0(\mathbf{R}^+ ,\mathbf{R})\) telle que \(1-f\) soit intégrable. Montrer que pour tout \((\alpha_1,\alpha_2)\in \mathbf{C}^2\), il existe une solution \(x\) de l’équation différentielle \(x''+f(t)\,x=0\) telle que la fonction \(t \mapsto x(t)-\alpha_1 e^{it}-\alpha_2 e^{-it}\) ait une limite nulle en \(+\infty\).
[oraux/ex4921]
[planches/ex1101] mines MP 2016 Soient \(a\) et \(b\) deux fonctions continues d’un segment \([u,v]\) de \(\mathbf{R}\) à valeurs réelles \(\mathbf{R}\). Soit \(f:[u,v]\rightarrow\mathbf{R}\) une solution non nulle de l’équation différentielle \(y''+a(x)y'+b(x)y=0\). Montrer que \(f\) admet un nombre fini de zéros.
[planches/ex1101]
La plupart des textes affichés provoquent l'apparition de bulles d'aide au passage de la souris