[oraux/ex3074] ens lyon MP 2010 Soient \(p\) et \(q\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(p\leqslant q\) et \(f\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) non identiquement nulle telle que \(f''+pf=0\).
[oraux/ex3074]
Montrer que les zéros de \(f\) sont isolés.
Soient \(x_1<x_2\) deux zéros consécutifs de \(f\) et \(g\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) telle que \(g''+qg=0\). Montrer que \(g\) s’annule sur \([x_1,x_2]\).
[planches/ex4986] mines MP 2019 Soient \(u\) une fonction continue et intégrable de \(\mathbf{R}_+\) dans \(\mathbf{R}\), \(f\) une solution de l’équation différentielle \(y''+(1+u)y=0\). Soit, pour \(x\in\mathbf{R}_+\), \(g(x)=f(x)+\displaystyle\int_0^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)u(t)f(t)\,dt\).
[planches/ex4986]
Former une équation différentielle linéaire vérifiée par \(g\).
Montrer qu’il existe \(c>0\) tel que \(\forall x\in\mathbf{R}_+\), \(|f(x)|\leqslant c+\displaystyle\int_0^x|u(t)f(t)|\,dt\).
Montrer que \(f\) est bornée.
[oraux/ex3041] mines PC 2009 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((E)\) : \(y''+qy=0\). Soient \(u\) et \(v\) deux solutions linéairement indépendantes de \((E)\).
[oraux/ex3041]
Montrer que les zéros de \(v\) sont isolés.
Montrer qu’entre deux zéros consécutifs de \(v\), \(u\) s’annule exactement une fois.
[concours/ex2393] mines M 1995 Soient \(f\) et \(g\) continues de \([a,b]\) dans \(\mathbf{R}\). On suppose que \(f\) est à valeurs dans \(\mathbf{R}_-\). Montrer que l’équation différentielle \(y''+f(x)y=g(x)\) possède une et une seule solution sur \([a,b]\) vérifiant \(y(a)=y(b)=0\).
[concours/ex2393]
[oraux/ex3009] ens PC 2009 Soient \((p,q)\in\mathscr{C}^0([0,1],\mathbf{R})\) avec \(q\leqslant 0\) et \((E)\) : \(y''+py'+qy=0\). Soit \((a,b)\in\mathbf{R}^2\). Montrer qu’il existe une unique solution \(f\) de \((E)\) telle que \(f(0)=a\) et \(f(1)=b\).
[oraux/ex3009]
Vous pouvez choisir d'afficher tous les résultats d'une requête de façon individuelle, ou en les regroupant par familles d'exercices