[examen/ex1382] polytechnique MP 2024
[examen/ex1382]
Soit \(f\in \mathscr{C}^1([0,\pi], \mathbf{R})\) telle que \(f(0)=f(\pi)=0\). Montrer que \(\displaystyle\int_0^{\pi}f^2\leqslant\frac{\pi^2}{8}\int_0^{\pi}(f')^2\).
Soit \(f\), \(q\in \mathscr{C}^0([0,\pi], \mathbf{R})\) telle que \(\forall x\in[0,\pi]\), \(q(x)<\displaystyle\frac{8}{\pi^2}\). Soient \(a\), \(b\in \mathbf{R}\). Montrer qu’il existe une unique fonction \(y\in \mathscr{C}^2([0,\pi], \mathbf{R})\) telle que \(y''+qy=f\), \(y(0)=a\), \(y(\pi)=b\).
[examen/ex1383] polytechnique MP 2024 Pour \(f\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\), on pose \(H(f):x\mapsto x^2f(x)-f''(x)\), \(A_-(f):x\mapsto -f'(x)+xf(x)\) et \(A_+(f):x\mapsto f'(x)+xf(x)\).
[examen/ex1383]
Déterminer \(A_-\circ A_+\) et \(A_+\circ A_-\).
Montrer qu’il existe une unique \(\varphi_0\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) de carré intégrable, telle que \(H(\varphi_0)=\varphi_0\) et \(\varphi_0(0)=1\).
On pose, pour \(n\in\mathbf{N}^*\), \(\varphi_n=A_-^n(\varphi_0)\).
Montrer que, pour tout \(n\in\mathbf{N}\), \(H(\varphi_n)=(2n+1)\varphi_n\).
Montrer que \(\varphi_n\) s’écrit sous la forme \(P_n\times\varphi_0\) avec \(P_n\) polynomiale.
[oraux/ex4931] ens paris, ens lyon, ens cachan MP 2012 Soit \(a>4\). On note \(E\) l’ensemble des \(f\in{\cal C}^0([0,1],\mathbf{R})\) de classe \({\cal C}^1\) sur \(]0,1]\), telles que \(f'^2\) soit intégrable sur \(]0,1]\) et vérifiant en outre \(f(0)=0\) et \(f(1)=1\) ; pour \(f\in E\), on pose \(\phi(f)=\displaystyle\int_0^1 \left(af'^2(t)-\frac{f(t)^2}{t^2}\right)\,dt\).
[oraux/ex4931]
On suppose que \(\phi\) réalise son minimum sur \(E\) en \(f\). Donner une équation différentielle qu’il est plausible que \(f\) vérifie, et en déduire une valeur plausible de \(f\).
Pour \(h\in E\), on pose \(g(t)=\displaystyle\frac{h(t)}{f(t)}\). Exprimer \(\phi(h)\) en fonction de \(g\), et en déduire que \(\phi\) réalise son minimum sur \(E\). Préciser en quels points.
[oraux/ex3108] centrale MP 2010 Soit \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{C})\) telle que \(t\mapsto tq(t)\) est intégrable sur \(\mathbf{R}_+\).
[oraux/ex3108]
Justifier l’existence de \(a\in\mathbf{R}_+\) tel que \(\displaystyle\int_a^{+\infty}|tq(t)|\,dt\leqslant 1/2\).
Montrer qu’il existe une suite \((y_n)_{n\geqslant 0}\) de fonctions continues et bornées de \(\left[a,+\infty\right[\) vers \(\mathbf{C}\) telles que : \(y_0=1\) et \(\forall n\in\mathbf{N}^*\), \(\forall x\in\left[a,+\infty\right[\), \(y_n(x)=1+\displaystyle\int_x^{+\infty}(t-x)q(t)y_{n-1}(t)\,dt\).
Montrer que \((y_n)\) converge uniformément vers une solution de \((E_a)\) : \(y''(t)+q(t)y(t)=0\), \(t\geqslant a\).
Montrer que l’équation \((E_0)\) : \(y''(t)+q(t)y(t)=0\), \(t\geqslant 0\), possède une solution \(Y\) telle que \(Y(t)\rightarrow1\) quand \(t\rightarrow+\infty\).
En déduire le comportement à l’infini des solutions de \((E_0)\) selon qu’elles sont, ou ne sont pas, bornées.
[oraux/ex3174] centrale MP 2011 (avec Maple)
[oraux/ex3174]
Maple
Soit \(f\) une fonction continue de \(\mathbf{R}^2\) dans \(\mathbf{R}\). On suppose qu’il existe \(L>0\) tel que : \(\forall(x,y,t)\in\mathbf{R}^3\), \(|f(t,x)-f(t,y)|\leqslant L|x-y|\). On fixe \(a\), \(b\) dans \(\mathbf{R}\). Si \(x\) est une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\), on note \(T(x)\) la fonction définie par : \[\forall t\in\mathbf{R},\quad T(x)(t)=a+bt+\int_0^t(t-s)f(s,x(s))\,ds.\]
Vérifier que \(T(x)\) est de classe \(C^1\) sur \(\mathbf{R}\).
On suppose \(f(t,x)=(2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits t-2)x\). On prend pour \(y\) la fonction nulle. Tracer, pour \(8\leqslant n\leqslant 12\), le graphe de \(T^n(y)\) sur \([-6,6]\).
Montrer que pour toute \(x\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) la suite \((T^n(x))\) converge uniformément sur tout segment de \(\mathbf{R}\) vers une fonction \(y\) telle que \(y(0)=a\), \(y'(0)=b\), \(\forall t\in\mathbf{R}\), \(y''(t)=f(t,y(t))\).
[planches/ex2136] mines MP 2017 Soient \(a\) et \(b\) continues et 1-périodiques, et soit \(y\) solution de \(y''+ay'+by=0\) telle que \(y(0)=y(1)=0\). Montrer que \(y\) s’annule en tout \(k\in\mathbf{Z}\).
[planches/ex2136]
[planches/ex9340] ens PSI 2023 Soient \(a>0\) et \(q \in\mathscr{C}^2(\left[a,+\infty\right[,\mathbf{R}^{+*})\) telle que \(\displaystyle\int_a^{+\infty} \sqrt {q(t)}\,{\rm d}t = +\infty\).
[planches/ex9340]
Soit \((E)\) l’équation différentielle \(y''+qy=0\)
Soient \(y_1\) et \(y_2\) deux fonctions de classe \(\mathscr{C}^1\) qui n’ont pas de zéros en commun. On pose \(\Phi = y_1 + iy_2\) et \(\Phi (a) = r_0e^{i\theta_0}\).
Montrer que \(\forall x \geqslant a\), \(\Phi (x) = e^{\Psi(x)}\) où \(\Psi(x)=\displaystyle\int_a^x\frac{\Phi'(t)}{\Phi(t)} \,{\rm d}t + \mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits (r_0) + i\theta_0\).
Montrer que l’on peut écrire \(y_1(x) =r(x)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\theta(x))\) et \(y_2(x) =r(x) \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta(x))\) où \(r(x) = \sqrt{y_1^2(x) + y_2^2(x)}\) et \(\theta (x) = \theta_0 +\displaystyle\int_a^x \displaystyle\frac{y_1y'_2-y_2y'_1}{y_1^2+ y_2^2}\).
On pose \(x \mapsto f(x) =\displaystyle\int_a^{x} \sqrt {q(t)}\,{\rm d}t\).
Montrer que \(f\) réalise une bijection de \(\left[a,+\infty\right[\) sur \(\mathbf{R}^+\).
Soit \(y\) une solution de \((E)\), non identiquement nulle. On pose \(Y = y\mathbin{\circ} f^{-1}\). Montrer que \(Y'' +vY' +Y =0\) où \(v~: t \mapsto\displaystyle\frac{q'(f^{-1}(t))}{2 (q(f^{-1}(t)))^{3/2}}\).
Montrer que \(Y\) et \(Y'\) n’ont pas de zéro en commun et que l’on peut écrire \(Y = r \mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits (\theta)\) et \(Y'= r \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta)\) où \(r\), \(\theta\) sont des fonctions de classe \(\mathscr{C}^1\).
Montrer que \((r^2)' = -2v r^2 \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2(\theta)\). En déduire que \(y\) et \(y'\) sont bornées.
[planches/ex7169] centrale MP 2021 Soit \(f\in\mathscr{C}^1(\left[1,+\infty\right[,\mathbf{R}_+^*)\) telle que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{x\rightarrow+\infty}f'(x)=\alpha>0\).
[planches/ex7169]
Soit \(u\in\mathscr{C}^2(\left[1,+\infty\right[,\mathbf{R})\) bornée et solution de l’équation différentielle \(u''-\displaystyle{f'\over f}u'-{u\over f^2}=0\). On pose \(h=\displaystyle{u'\over f}\).
Montrer que \(u'(x)=O(1/x)\) lorsque \(x\rightarrow+\infty\).
Montrer que \(u^2\) admet une limite \(\ell\) en \(+\infty\).
Montrer que \(\ell=0\).
[planches/ex2502] centrale MP 2017 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}_+^*\). On considère l’équation différentielle \((\mathscr{E})\) : \(y''(x)=q(x)y(x)\).
[planches/ex2502]
Pour tout \(\alpha\in\mathbf{R}\), on note \(y_\alpha\) l’unique solution de \((\mathscr{E})\) vérifiant \(y_\alpha(0)=1\) et \(y_\alpha'(0)=\alpha\).
Montrer que \(\forall x\in\left]0,+\infty\right[\), \(y_0(x)y_0'(x)>0\). Montrer que \(y_0\) est strictement croissante.
Montrer que \(\forall\alpha\in\mathbf{R}\), \(\forall x\in\left]0,+\infty\right[\), \(y_\alpha(x)=y_0(x)\left(\displaystyle\int_0^x{\alpha\over y_0^2(t)}\,dt\right)\).
Montrer qu’il existe \(\alpha_1<0\) tel que l’on ait, pour \(\alpha\in\mathbf{R}\), l’équivalence entre « \(y_\alpha\) s’annule sur \(\mathbf{R}_+\) » et « \(\alpha<\alpha_1\) ». Calculer \(\alpha_1\).
[planches/ex9979] mines MP 2023
[planches/ex9979]
Soient \(A\in\mathbf{R}^+\), \(f\), \(g:\mathbf{R}^+\rightarrow\mathbf{R}^+\) continues. On suppose que : \[\forall x\geqslant 0,\quad f(x)\leqslant A+\int_0^xf(t)\,g(t)\,\mathrm{d}t.\] Montrer que \(\forall x\geqslant 0\), \(f(x)\leqslant A\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\displaystyle\int_0^xg(t)\,\mathrm{d}t\right)\).
Soit \((*)\) l’équation différentielle \(x''(t)+a(t)x(t)=b(t)\) avec \(a\) et \(b\) continues sur \(\mathbf{R}^+\), \(b\) et \(t\mapsto t\,a(t)\) intégrables sur \(\mathbf{R}^+\). Soit \(x\) solution de \((*)\).
Montrer que : \[\forall t\geqslant 1,\quad x(t)=x(1)+(t-1)x'(1)-\int_1^t(t-u)\,a(u)\,x(u)\,\mathrm{d}u+\int_1^t(t-u)\,b(u)\,\mathrm{d}u.\]
On pose, pour \(t\geqslant 1\), \(y(t)=\displaystyle\frac{|x(t)|}{t}\). Montrer l’existence de \(K\) tel que : \[\forall t\geqslant 1,\quad y(t)\leqslant K\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\int_1^tu\,|a(u)|\,\mathrm{d}u\right)\leqslant K\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\int_1^{+\infty}u\,|a(u)|\,\mathrm{d}u\right).\]
[oraux/ex3170] centrale MP 2011 (avec Maple)
[oraux/ex3170]
Soit \((E_\lambda)\) l’équation \(-y''+x^2y=\lambda y\).
Tracer les solutions pour \(\lambda\in\{1,2\}\) pour chacune des conditions initiales suivantes : \(\{y(0)=0,\ y'(0)=1\}\) et \(\{y(0)=1,\ y'(0)=0\}\).
On étude \((E_1)\). Chercher les valeurs de \(\sigma\) telles que \(t\mapsto e^{at^2}\) soit solution. En déduire toutes les solutions de \((E_1)\) à l’aide de \(\varphi:x\mapsto\displaystyle\int_0^xe^{t^2}\,dt\). Chercher avec Maple un équivalent de \(\varphi\) en \(+\infty\). Quelles sont les solutions bornées de \((E_1)\) ?
Soit \(y\) une solution de \((E_\lambda)\). Déterminer une équation vérifiée par \(u:x\mapsto y(x)e^{x^2/2}\). Montrer que ces fonctions \(u\) sont développables en série entière, et qu’il en est de même de toutes les solutions de \((E_\lambda)\).
[oraux/ex3113] centrale PSI 2010 Soit \(u\in\mathscr{C}^2([0,1],\mathbf{R})\) telle que : \(u''(x)+e^xu'(x)=-1\), \(u(0)=u(1)=0\).
[oraux/ex3113]
Montrer que \(u\) n’admet pas de minimum local sur \(\left]0,1\right[\).
Montrer que \(u'(0)>0\) et \(u'(1)<0\).
Montrer que \(u\) existe et est unique. Exprimer \(u\) à l’aide d’intégrales.
[examen/ex2795] ens paris, ens lyon, ens saclay, ens rennes MP 2025 On fixe un intervalle non trivial \(I\).
[examen/ex2795]
Soient \(a\) et \(b\) deux fonctions continues de \(I\) dans \(\mathbf{R}\). Soit \(f\) une solution non nulle sur \(I\) de \(y''+a y'+b y=0\). Montrer que les zéros de \(f\) sont isolés : pour tout zéro \(t_0\) de \(f\) il existe un \(\delta>0\) tel que \(f\) n’ait pas de zéro dans \(\left]t_0-\delta,t_0+\delta\right[\setminus\{t_0\}\).
Soient \(p_1\), \(p_2\) deux fonctions continues de \(I\) dans \(\mathbf{R}\) telles que \(\forall t\in I\), \(p_1(t)\geqslant p_2(t)\). Soient \(f\), \(g\in\mathscr{C}^2(I,\mathbf{R})\setminus\{0\}\) telles que \(f''+p_1f=0\) et \(g''+p_2g=0\). Soient \(t_1<t_2\) deux zéros de \(f\) entre lesquels \(f\) n’admet aucun autre zéro. Montrer qu’il existe un zéro de \(g\) dans \(\left[t_1,t_2\right[\), ainsi que dans \(\left]t_1,t_2\right]\).
Soient \(p\), \(q\) deux fonctions continues de \([0,1]\) dans \(\mathbf{R}\) telles que \(\forall t\in[0,1]\), \(q(t)>0\). Pour \(\lambda\in\mathbf{R}\), on note \(f_\lambda\) la solution sur \([0,1]\) de l’équation différentielle \(y''+(p(t)+\lambda q(t))y=0\) avec la condition initiale \(f_\lambda(0)=0\) et \(f'_\lambda(0)=1\). On note \(N_\lambda\) le nombre de zéros de \(f_\lambda\). Montrer que \(\lambda\mapsto N_\lambda\) est croissante et déterminer ses limites en \(-\infty\) et \(+\infty\).
On admet que \((x,\lambda)\in[0,1]\times\mathbf{R}\mapsto f_\lambda(x)\) est continue. Montrer que l’ensemble \(\{\lambda\in\mathbf{R},\ f_\lambda(1)=0\}\) est l’ensemble des termes d’une suite réelle strictement croissante.
Montrer que \((\lambda,x)\mapsto f_\lambda(x)\) est continue sur \(\mathbf{R}\times[0,1]\).
[planches/ex1056] mines MP 2015 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+)\) et \(x\) une solution strictement positive de \(x''+q(t)x=0\). On pose \(f=x'/x\).
[planches/ex1056]
Donner une équation différentielle satisfaite par \(f\).
Montrer que \(f\) est décroissante positive.
Que peut-on dire de l’intégrabilité de \(q\) ?
[planches/ex0956] centrale MP 2013 Soit \(q\in\mathscr{C}^1(\mathbf{R},\mathbf{C})\) \(\pi\)-périodique. Pour \(\omega\in\mathbf{R}\), on considère l’équation différentielle \((E_\omega)\) : \(x''+(\omega^2-q)x=0\) et on note \(S(\omega)\) l’ensemble de ses solutions.
[planches/ex0956]
Établir l’existence de \(x_1\) et \(x_2\) dans \(S(\omega)\) telles que : \[(x_1(0),x'_1(0))=(1,0)\quad\hbox{et}\quad(x_2(0),x'_2(0))=(0,1).\] Montrer que \((x_1,x_2)\) est libre.
Calculer le wronskien de \((x_1,x_2)\).
Soit \(T\) qui à \(x\in S(\omega)\) associe \(T(x):t\mapsto x(t+\pi)\). Montrer que \(T\) est un automorphisme de \(S(\omega)\). Donner la matrice de \(T\) dans la base \((x_1,x_2)\).
On pose \(\Delta=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(T)/2\). Montrer que \(\chi_T=X^2-2\Delta X+1\).
Si \(|\Delta|>1\), montrer que \((E_\omega)\) possède des solutions non bornées. Si \(|\Delta|<1\), montrer que les solutions de \((E_\omega)\) sont bornées.
Montrer que : \[\begin{aligned} x_1(t)&=&\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega t)+\int_0^tx_1(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du,\cr x_2(t)&=&{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega t)\over t}+\int_0^tx_2(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du. \end{aligned}\] On fait désormais varier \(\omega\).
Montrer que, lorsque \(\omega\rightarrow+\infty\), \(\Delta_\omega=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega\pi)+O(1/\omega)\).
On appelle intervalle de divergence tout intervalle \(I\) de \(\mathbf{R}\) tel que : \(\forall\omega\in I\), \(|\Delta_\omega|>1\).
Soit \(\varepsilon>0\). Établir l’existence de \(X\in\mathbf{R}_+\) tel que, pour tout intervalle de divergence \(I\subset\left[X,+\infty\right[\), il existe un entier \(n\) tel que \(I\subset[n-\varepsilon,n+\varepsilon]\).
[oraux/ex3051] centrale MP 2009 (avec Maple)
[oraux/ex3051]
Soient \((E)\) : \((1-x)^3y''=y\) et \(y\) l’unique solution de \((E)\) définie sur \(I=\left]-\infty,1\right[\) vérifiant \(y(0)=0\) et \(y'(0)=1\).
Justifier l’existence de \(y\) ; tracer le graphe de \(y\) à l’aide de la fonction odeplot du package plots.
odeplot
plots
On pose \(a_n=y^{(n)}(0)/n\,!\). Établir que \((a_n)\) vérifie une relation de récurrence liant \(a_n\), \(a_{n-1}\), \(a_{n-1}\) et \(a_{n-3}\).
calculer \(a_n\) pour \(n\in\{0,\ldots,10\}\).
Montrer qu’il existe \(\alpha>0\) tel que : \(\forall n\in\mathbf{N}\), \(|a_n|\leqslant\alpha^n\). Qu’en déduire sur \(y\) ?
Montrer que \(y\) est positive sur \(\left[0,1\right[\).
En déduire que \(y(x)\geqslant x+\displaystyle\int_0^x{x-t\over(1-t)^2}\,dt\).
Calculer cette intégrale avec Maple. Qu’en déduire sur le comportement de \(y\) ?
[planches/ex0957] centrale MP 2013 Soient \(q\in\mathscr{C}^0(\left[a,+\infty\right[,\mathbf{R}_+)\) et \((E)\) l’équation différentielle \(y''=q(x)y\).
[planches/ex0957]
Soit \(f\) une solution de \((E)\) telle que \(f(a)>0\) et \(f'(a)>0\). Montrer que \(f\) et \(f'\) sont strictement positives et que \(f\) tend vers \(+\infty\) en \(+\infty\).
Soient \(u\) et \(v\) les solutions de \((E)\) telles que \(u(a)=1\), \(u'(a)=0\), \(v(a)=0\), \(v'(a)=1\). Calculer \(u'v-uv'\). Montrer que, sur \(\left]a,+\infty\right[\), \(u/v\) et \(u'/v'\) sont monotones de monotonies opposées. Montrer que \(u/v\) et \(u'/v'\) tendent en \(+\infty\) vers la même limite réelle.
Montrer qu’il existe une unique solution \(g\) de \((E)\), strictement positive, telle que \(g(a)=1\) et telle que \(g\) décroisse sur \(\left[a,+\infty\right[\).
Déterminer \(g\) lorsque \(q(x)=\displaystyle{1\over x^4}\) sur \(\left[1,+\infty\right[\). On pourra poser \(y(x)=xz(1/x)\).
[concours/ex4170] mines M 1990 Soit \(f\) une solution sur \(\mathbf{R}_+\) de : \[y''+e^{-t^2}y=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits t.\] On suppose \(f\) bornée et \(\displaystyle\int_0^{+\infty}f^2\) convergente. Montrer que \(f'\) est bornée, puis que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{t\rightarrow+\infty}f(t)=0\).
[concours/ex4170]
[concours/ex3550] polytechnique M 1992 Soit \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}_+\) dans \(\mathbf{R}\). On suppose que les intégrales \(\displaystyle\int_0^{+\infty}ta(t)\,dt\) et \(\displaystyle\int_0^{+\infty}b(t)\,dt\) convergent absolument. On considère l’équation \((E)\) : \(x''+a(t)x=b(t)\). Soit \(x\) une solution de \((E)\). Montrer que \(x\) a une limite en \(+\infty\).
[concours/ex3550]
[planches/ex1005] polytechnique, espci PC 2014 Soit \(f\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\), \(g\in\mathscr{C}^1(\mathbf{R},\mathbf{R}_+)\) telles que : \(\forall x\in\mathbf{R}\), \(f''(x)+f(x)=-xg(x)f'(x)\). Montrer que \(f\) est bornée.
[planches/ex1005]
Sur les pages de résultats, vous pouvez déterminer le nombre d'énoncés affichés