[planches/ex0956] centrale MP 2013 Soit \(q\in\mathscr{C}^1(\mathbf{R},\mathbf{C})\) \(\pi\)-périodique. Pour \(\omega\in\mathbf{R}\), on considère l’équation différentielle \((E_\omega)\) : \(x''+(\omega^2-q)x=0\) et on note \(S(\omega)\) l’ensemble de ses solutions.
[planches/ex0956]
Établir l’existence de \(x_1\) et \(x_2\) dans \(S(\omega)\) telles que : \[(x_1(0),x'_1(0))=(1,0)\quad\hbox{et}\quad(x_2(0),x'_2(0))=(0,1).\] Montrer que \((x_1,x_2)\) est libre.
Calculer le wronskien de \((x_1,x_2)\).
Soit \(T\) qui à \(x\in S(\omega)\) associe \(T(x):t\mapsto x(t+\pi)\). Montrer que \(T\) est un automorphisme de \(S(\omega)\). Donner la matrice de \(T\) dans la base \((x_1,x_2)\).
On pose \(\Delta=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(T)/2\). Montrer que \(\chi_T=X^2-2\Delta X+1\).
Si \(|\Delta|>1\), montrer que \((E_\omega)\) possède des solutions non bornées. Si \(|\Delta|<1\), montrer que les solutions de \((E_\omega)\) sont bornées.
Montrer que : \[\begin{aligned} x_1(t)&=&\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega t)+\int_0^tx_1(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du,\cr x_2(t)&=&{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega t)\over t}+\int_0^tx_2(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du. \end{aligned}\] On fait désormais varier \(\omega\).
Montrer que, lorsque \(\omega\rightarrow+\infty\), \(\Delta_\omega=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega\pi)+O(1/\omega)\).
On appelle intervalle de divergence tout intervalle \(I\) de \(\mathbf{R}\) tel que : \(\forall\omega\in I\), \(|\Delta_\omega|>1\).
Soit \(\varepsilon>0\). Établir l’existence de \(X\in\mathbf{R}_+\) tel que, pour tout intervalle de divergence \(I\subset\left[X,+\infty\right[\), il existe un entier \(n\) tel que \(I\subset[n-\varepsilon,n+\varepsilon]\).
[oraux/ex3187] centrale PC 2011 (avec Maple)
[oraux/ex3187]
Maple
Soit, pour \(a\in\mathbf{R}\), \((E_a)\) : \((x-1)y''(x)-y'(x)+4a(x-1)^3y(x)=0\).
Donner une condition nécessaire et suffisante sur \(a\) pour qu’il existe une solution non nulle de \((E_a)\) s’annulant en 0 et en 1. On note \((a_k)_{k\geqslant 0}\) la suite strictement croissante des réels ainsi trouvés.
Soit, pour \(k\in\mathbf{N}\), \(\varphi_k:x\mapsto\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\sqrt{a_k}x(x-2))\).
Si \((f,g)\in\mathscr{C}^0([0,1],\mathbf{R})^2\), on pose \(\langle f,g\rangle=\displaystyle\int_0^12(1-x)f(x)g(x)\,dx\). Montrer que cette application définit un produit scalaire sur \(\mathscr{C}^0([0,1],\mathbf{R})\). Calculer \(\langle\varphi_k,\varphi_j\rangle\) pour \((j,k)\in\mathbf{N}^2\).
Soit \((b_n)_{n\geqslant 0}\in\mathbf{R}^\mathbf{N}\). On suppose que la série de terme général \(b_n\) est absolument convergente. Soit \(F:x\mapsto\displaystyle\sum\limits_{k=0}^{+\infty}b_k\varphi_k(x)\). Montrer que \(F\) est définie et continue sur \(\mathbf{R}\). Exprimer les \(b_k\) à l’aide d’une intégrale faisant intervenir \(F\) et les \((\varphi_n)_{n\geqslant 0}\).
[oraux/ex2784] mines 2003 Soit \(\lambda>0\). On considère l’équation différentielle : \[(E)\qquad y''=-y+\lambda y'(1-y^2).\] On note \(\varphi:I\rightarrow\mathbf{R}\) une solution maximale de \((E)\). On pose \(g=\varphi^2+(\varphi')^2\).
[oraux/ex2784]
Montrer que \(g'\leqslant 2\lambda g\).
Soit \(a\in I\).
Soit \(x\in\left[a,+\infty\right[\cap I\). Montrer que \(g(x)\leqslant g(a)e^{2\lambda(x-a)}\).
Montrer que \(I\supset\left[a,+\infty\right[\).
[concours/ex3550] polytechnique M 1992 Soit \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}_+\) dans \(\mathbf{R}\). On suppose que les intégrales \(\displaystyle\int_0^{+\infty}ta(t)\,dt\) et \(\displaystyle\int_0^{+\infty}b(t)\,dt\) convergent absolument. On considère l’équation \((E)\) : \(x''+a(t)x=b(t)\). Soit \(x\) une solution de \((E)\). Montrer que \(x\) a une limite en \(+\infty\).
[concours/ex3550]
[oraux/ex3113] centrale PSI 2010 Soit \(u\in\mathscr{C}^2([0,1],\mathbf{R})\) telle que : \(u''(x)+e^xu'(x)=-1\), \(u(0)=u(1)=0\).
[oraux/ex3113]
Montrer que \(u\) n’admet pas de minimum local sur \(\left]0,1\right[\).
Montrer que \(u'(0)>0\) et \(u'(1)<0\).
Montrer que \(u\) existe et est unique. Exprimer \(u\) à l’aide d’intégrales.
[oraux/ex3147] polytechnique, espci PC 2011 Soit \(y\) une solution de \(y''(x)=xy(x)\) sur \([0,1]\) telle que \(y(0)=1\) et \(y'(0)=0\). Montrer : \(\forall x\in[0,1]\), \(|y'(x)|+|y(x)|\leqslant e^x\).
[oraux/ex3147]
[oraux/ex3146] polytechnique, ens cachan PSI 2011
[oraux/ex3146]
Donner un exemple de fonction continue, non identiquement nulle au voisinage de 0 et telle que 0 n’est pas un zéro isolé.
Soient \(f:\mathbf{R}\rightarrow\mathbf{R}\) dérivable et \(a\in\mathbf{R}\). On suppose que \(f(a)=0\) et que \(a\) n’est pas un zéro isolé de \(f\). Montrer que \(f'(a)=0\).
Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\), \(f:[a,b]\rightarrow\mathbf{R}\) dérivable telle que \(f(a)=f(b)=0\) et \(\forall x\in\left]a,b\right[\), \(f(x)\geqslant 0\). Montrer : \(f'(a)f'(b)\leqslant 0\).
Soient \(I\) un intervalle de \(\mathbf{R}\), \(p\) et \(q\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle : \(y''+py'+qy=0\).
Soit \(f\) une solution non identiquement nulle de \((E)\). Montrer que les zéros de \(f\) sont isolés.
Soient \(f\) et \(g\) deux solutions de \((E)\) et \(t_0\in I\). On suppose qu’il existe \(c\in\mathbf{R}\) tel que \(f(t_0)=cg(t_0)\) et \(f'(t_0)=cg'(t_0)\). Montrer : \(f=cg\).
Soient \(f\) et \(g\) deux solutions indépendantes de \((E)\). Montrer que le wronskien \(W\) de \(f\) et de \(g\) ne s’annule pas. Exprimer \(W(t)\) en fonction de \(W(t_0)\). Montrer que, entre deux zéros consécutifs de \(f\), la fonction \(g\) s’annule.
[oraux/ex3108] centrale MP 2010 Soit \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{C})\) telle que \(t\mapsto tq(t)\) est intégrable sur \(\mathbf{R}_+\).
[oraux/ex3108]
Justifier l’existence de \(a\in\mathbf{R}_+\) tel que \(\displaystyle\int_a^{+\infty}|tq(t)|\,dt\leqslant 1/2\).
Montrer qu’il existe une suite \((y_n)_{n\geqslant 0}\) de fonctions continues et bornées de \(\left[a,+\infty\right[\) vers \(\mathbf{C}\) telles que : \(y_0=1\) et \(\forall n\in\mathbf{N}^*\), \(\forall x\in\left[a,+\infty\right[\), \(y_n(x)=1+\displaystyle\int_x^{+\infty}(t-x)q(t)y_{n-1}(t)\,dt\).
Montrer que \((y_n)\) converge uniformément vers une solution de \((E_a)\) : \(y''(t)+q(t)y(t)=0\), \(t\geqslant a\).
Montrer que l’équation \((E_0)\) : \(y''(t)+q(t)y(t)=0\), \(t\geqslant 0\), possède une solution \(Y\) telle que \(Y(t)\rightarrow1\) quand \(t\rightarrow+\infty\).
En déduire le comportement à l’infini des solutions de \((E_0)\) selon qu’elles sont, ou ne sont pas, bornées.
[planches/ex1056] mines MP 2015 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+)\) et \(x\) une solution strictement positive de \(x''+q(t)x=0\). On pose \(f=x'/x\).
[planches/ex1056]
Donner une équation différentielle satisfaite par \(f\).
Montrer que \(f\) est décroissante positive.
Que peut-on dire de l’intégrabilité de \(q\) ?
[oraux/ex4963] ens PC 2012 Soient \((E)\) : \(y''+(1+e^{-t}) y=0\) et \((F)\) : \(y''+y=0\). Soient \(f\) une solution non nulle de \((E)\) et \(g\) une solution non nulle de \((F)\).
[oraux/ex4963]
Montrer qu’entre deux zéros de \(g\) il y a au moins un zéro de \(f\).
Montrer que \(f\) possède une infinité de zéros sur \(\mathbf{R}^+\). On note \((x_n)_{n\geqslant 0}\) la suite ordonnée des zéros de \(f\) sur \(\mathbf{R}^+\).
Montrer que \(x_{n+1}-x_n\rightarrow \pi\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow +\infty\).
[concours/ex5308] ens paris MP 2007
[concours/ex5308]
Soit \(x\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R})\) convexe, minorée et décroissante. Étudier la limite de \(t\mapsto tx'(t)\) lorsque \(t\rightarrow+\infty\).
Soient \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R}_+)\) et \(x\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R}_+^*)\) décroissante telles que \(x''=qx\). Montrer : \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{+\infty}x=0\Leftrightarrow\displaystyle\int_0^{+\infty}tq(t)\,dt=+\infty\).
[oraux/ex4931] ens paris, ens lyon, ens cachan MP 2012 Soit \(a>4\). On note \(E\) l’ensemble des \(f\in{\cal C}^0([0,1],\mathbf{R})\) de classe \({\cal C}^1\) sur \(]0,1]\), telles que \(f'^2\) soit intégrable sur \(]0,1]\) et vérifiant en outre \(f(0)=0\) et \(f(1)=1\) ; pour \(f\in E\), on pose \(\phi(f)=\displaystyle\int_0^1 \left(af'^2(t)-\frac{f(t)^2}{t^2}\right)\,dt\).
[oraux/ex4931]
On suppose que \(\phi\) réalise son minimum sur \(E\) en \(f\). Donner une équation différentielle qu’il est plausible que \(f\) vérifie, et en déduire une valeur plausible de \(f\).
Pour \(h\in E\), on pose \(g(t)=\displaystyle\frac{h(t)}{f(t)}\). Exprimer \(\phi(h)\) en fonction de \(g\), et en déduire que \(\phi\) réalise son minimum sur \(E\). Préciser en quels points.
[oraux/ex3136] ens PC 2011 Soit \(g\in\mathscr{C}^\infty(\mathbf{R}_+,\mathbf{R})\). On suppose qu’il existe \((\alpha,\beta)\in(\mathbf{R}_+^*)^2\) tel que : \(\forall x\in\mathbf{R}_+\), \(|g(x)|\leqslant\alpha e^{-\beta x}\). Montrer que l’équation différentielle \(u''-(1+g)u=0\) possède une solution non nulle ayant pour limite 0 en \(+\infty\).
[oraux/ex3136]
Indication : Considérer une suite de fonctions \((u_n)_{n\geqslant 0}\) telle que : \(\forall n\in\mathbf{N}\), \(u_{n+1}''-u_{n+1}=gu_n\).
[planches/ex1079] ens paris, ens lyon, ens cachan, ens rennes MP 2016 Soient \(b\in\mathbf{R}_+^*\) et \(f\) une fonction continue définie sur \(\left[1,+\infty\right[\) telle que \(f(r)=O(r^{-b-2})\).
[planches/ex1079]
Soit \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{u'\over r}+{u\over r^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\) et préciser la vitesse de convergence.
Soient \(j>0\) de classe \(\mathscr{C}^1\) sur \(\left[1,+\infty\right[\) telle que \(j'\) tend vers 1 en \(+\infty\) et \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{j'\over j}u'+{u\over j^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\).
[planches/ex9268] ens saclay, ens rennes MP 2023 On considère l’équation différentielle \((D_{\lambda})\) : \(y'' + (\lambda-r)y =0\) avec \(\lambda \in \mathbb{R}\), \(r \in\mathscr{C}^{\infty}(I, \mathbb{R})\), où \(I\) est un intervalle contenant \([0, 1]\).
[planches/ex9268]
On considère \(E_{\lambda}\) l’espaces des solutions \(y\) de \((D_{\lambda})\) telles que \(y(0) = 0\), \(y(1) = 0\).
Quelles sont les dimensions possibles de \(E_{\lambda}\) ?
Caractériser le cas \(\mathop{\mathchoice{\hbox{dim}}{\hbox{dim}}{\mathrm{dim}}{\mathrm{dim}}}\nolimits(E_{\lambda}) = 1\). (On souhaite une condition portant sur \(y_{\lambda}\), solution du problème de Cauchy \((D_{\lambda})\), \(y_{\lambda}(0) = 0\), \(y_{\lambda}'(0) = 1\).)
Montrer que, à \(r\) fixé, les \(E_{\lambda}\) sont orthogonaux pour le produit scalaire \(\langle f, g \rangle = \displaystyle\int_{0}^{1} fg\).
On note \(N_\lambda\) le nombre de zéros de \(y_{\lambda}\) sur \([0, 1]\). Pourquoi est-il fini ?
Calculer \(N_{\lambda}\) dans le cas \(r = 0\), \(\lambda > 0\).
Dans le cas général, étudier le comportement de \(N_{\lambda}\).
[planches/ex0965] centrale PSI 2013 Soit \(F\) l’espace vectoriel des fonctions continues et bornées sur \(\left]0,+\infty\right[\). Pour \(f\in F\), on considère l’équation différentielle \((E)\) : \(x^2y''+2y'-2y=f(x)\).
[planches/ex0965]
Trouver les fonctions \(x\mapsto x^r\) solutions de l’équation homogène associée à \((E)\).
Soit \(g(x)=\displaystyle\int_0^x{-tf(t)\over3x^2}\,dt+\int_x^{+\infty}{-xf(t)\over3t^2}\,dt\). Montrer que \(g\) est bien définie sur \(\left]0,+\infty\right[\) puis vérifier que \(g\) est solution de \((E)\).
Quel est le lien entre les deux questions précédentes ?
Montrer que l’application qui envoie \(f\) sur \(g\) définit un endomorphisme de \(F\).
[concours/ex2392] mines M 1995 Soit \(f:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction continue telle que \(\displaystyle\int_0^{+\infty}f^2(t)\,dt\) converge. Montrer que toute solution de \(x''(t)+(1+f(t))x(t)=0\) est bornée.
[concours/ex2392]
[oraux/ex3170] centrale MP 2011 (avec Maple)
[oraux/ex3170]
Soit \((E_\lambda)\) l’équation \(-y''+x^2y=\lambda y\).
Tracer les solutions pour \(\lambda\in\{1,2\}\) pour chacune des conditions initiales suivantes : \(\{y(0)=0,\ y'(0)=1\}\) et \(\{y(0)=1,\ y'(0)=0\}\).
On étude \((E_1)\). Chercher les valeurs de \(\sigma\) telles que \(t\mapsto e^{at^2}\) soit solution. En déduire toutes les solutions de \((E_1)\) à l’aide de \(\varphi:x\mapsto\displaystyle\int_0^xe^{t^2}\,dt\). Chercher avec Maple un équivalent de \(\varphi\) en \(+\infty\). Quelles sont les solutions bornées de \((E_1)\) ?
Soit \(y\) une solution de \((E_\lambda)\). Déterminer une équation vérifiée par \(u:x\mapsto y(x)e^{x^2/2}\). Montrer que ces fonctions \(u\) sont développables en série entière, et qu’il en est de même de toutes les solutions de \((E_\lambda)\).
[planches/ex6022] polytechnique PC 2020 Soit \(f:\left[0,+\infty\right[\rightarrow\mathbf{R}\) dérivable, positive, décroissante et non intégrable sur \(\left[0,+\infty\right[\).
[planches/ex6022]
Soit \(y:\left[0,+\infty\right[\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^2\), non identiquement nulle et vérifiant \(y''+fy=0\).
Est-il possible d’avoir \(y\geqslant 0\) ? On pourra considérer \(E=fy^2+(y')^2\).
Soit \(t_0>0\) tel que \(y(t_0)=0\). Montrer qu’il existe \(\varepsilon>0\) tel que \(\forall t\in[t_0-\varepsilon,t_0+\varepsilon]\setminus\{t_0\}\), \(y(t)\neq 0\).
Déduire de la première question que \(y\) s’annule. Montrer que \(y\) admet une infinité de zéros. Comment interpréter le résultat d’un point de vue physique ?
Vous avez le choix entre plusieurs mises en page des PDF contenant les exercices : testez-les !