[planches/ex2502] centrale MP 2017 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}_+^*\). On considère l’équation différentielle \((\mathscr{E})\) : \(y''(x)=q(x)y(x)\).
[planches/ex2502]
Pour tout \(\alpha\in\mathbf{R}\), on note \(y_\alpha\) l’unique solution de \((\mathscr{E})\) vérifiant \(y_\alpha(0)=1\) et \(y_\alpha'(0)=\alpha\).
Montrer que \(\forall x\in\left]0,+\infty\right[\), \(y_0(x)y_0'(x)>0\). Montrer que \(y_0\) est strictement croissante.
Montrer que \(\forall\alpha\in\mathbf{R}\), \(\forall x\in\left]0,+\infty\right[\), \(y_\alpha(x)=y_0(x)\left(\displaystyle\int_0^x{\alpha\over y_0^2(t)}\,dt\right)\).
Montrer qu’il existe \(\alpha_1<0\) tel que l’on ait, pour \(\alpha\in\mathbf{R}\), l’équivalence entre « \(y_\alpha\) s’annule sur \(\mathbf{R}_+\) » et « \(\alpha<\alpha_1\) ». Calculer \(\alpha_1\).
[oraux/ex3187] centrale PC 2011 (avec Maple)
[oraux/ex3187]
Maple
Soit, pour \(a\in\mathbf{R}\), \((E_a)\) : \((x-1)y''(x)-y'(x)+4a(x-1)^3y(x)=0\).
Donner une condition nécessaire et suffisante sur \(a\) pour qu’il existe une solution non nulle de \((E_a)\) s’annulant en 0 et en 1. On note \((a_k)_{k\geqslant 0}\) la suite strictement croissante des réels ainsi trouvés.
Soit, pour \(k\in\mathbf{N}\), \(\varphi_k:x\mapsto\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\sqrt{a_k}x(x-2))\).
Si \((f,g)\in\mathscr{C}^0([0,1],\mathbf{R})^2\), on pose \(\langle f,g\rangle=\displaystyle\int_0^12(1-x)f(x)g(x)\,dx\). Montrer que cette application définit un produit scalaire sur \(\mathscr{C}^0([0,1],\mathbf{R})\). Calculer \(\langle\varphi_k,\varphi_j\rangle\) pour \((j,k)\in\mathbf{N}^2\).
Soit \((b_n)_{n\geqslant 0}\in\mathbf{R}^\mathbf{N}\). On suppose que la série de terme général \(b_n\) est absolument convergente. Soit \(F:x\mapsto\displaystyle\sum\limits_{k=0}^{+\infty}b_k\varphi_k(x)\). Montrer que \(F\) est définie et continue sur \(\mathbf{R}\). Exprimer les \(b_k\) à l’aide d’une intégrale faisant intervenir \(F\) et les \((\varphi_n)_{n\geqslant 0}\).
[oraux/ex3136] ens PC 2011 Soit \(g\in\mathscr{C}^\infty(\mathbf{R}_+,\mathbf{R})\). On suppose qu’il existe \((\alpha,\beta)\in(\mathbf{R}_+^*)^2\) tel que : \(\forall x\in\mathbf{R}_+\), \(|g(x)|\leqslant\alpha e^{-\beta x}\). Montrer que l’équation différentielle \(u''-(1+g)u=0\) possède une solution non nulle ayant pour limite 0 en \(+\infty\).
[oraux/ex3136]
Indication : Considérer une suite de fonctions \((u_n)_{n\geqslant 0}\) telle que : \(\forall n\in\mathbf{N}\), \(u_{n+1}''-u_{n+1}=gu_n\).
[concours/ex3343] centrale M 1993 On considère l’équation différentielle \((E)\) : \[y''+y'+p(x)y=0.\] Trouver \(p(x)\) pour que \((E)\) admette deux solutions \(y_1\), \(\mu y_2\) non identiquement nulles et telles que \(y_2=y_1^2\). Résoudre alors \((E)\).
[concours/ex3343]
[oraux/ex3140] polytechnique MP 2011 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_-^*)\), \((E)\) l’équation différentielle \(y''+q(t)y=0\) et \((\varphi,\psi)\) le couple formé des solutions de \((E)\) sur \(\mathbf{R}\) vérifiant \((\varphi(0)=1,\ \varphi'(0)=0)\) et \((\psi(0)=0,\ \psi'(0)=1)\). Montrer que : \(\forall x\in\mathbf{R}_+\), \(\varphi(x)\geqslant 1\) et \(\psi(x)\geqslant x\).
[oraux/ex3140]
[planches/ex0956] centrale MP 2013 Soit \(q\in\mathscr{C}^1(\mathbf{R},\mathbf{C})\) \(\pi\)-périodique. Pour \(\omega\in\mathbf{R}\), on considère l’équation différentielle \((E_\omega)\) : \(x''+(\omega^2-q)x=0\) et on note \(S(\omega)\) l’ensemble de ses solutions.
[planches/ex0956]
Établir l’existence de \(x_1\) et \(x_2\) dans \(S(\omega)\) telles que : \[(x_1(0),x'_1(0))=(1,0)\quad\hbox{et}\quad(x_2(0),x'_2(0))=(0,1).\] Montrer que \((x_1,x_2)\) est libre.
Calculer le wronskien de \((x_1,x_2)\).
Soit \(T\) qui à \(x\in S(\omega)\) associe \(T(x):t\mapsto x(t+\pi)\). Montrer que \(T\) est un automorphisme de \(S(\omega)\). Donner la matrice de \(T\) dans la base \((x_1,x_2)\).
On pose \(\Delta=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(T)/2\). Montrer que \(\chi_T=X^2-2\Delta X+1\).
Si \(|\Delta|>1\), montrer que \((E_\omega)\) possède des solutions non bornées. Si \(|\Delta|<1\), montrer que les solutions de \((E_\omega)\) sont bornées.
Montrer que : \[\begin{aligned} x_1(t)&=&\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega t)+\int_0^tx_1(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du,\cr x_2(t)&=&{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega t)\over t}+\int_0^tx_2(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du. \end{aligned}\] On fait désormais varier \(\omega\).
Montrer que, lorsque \(\omega\rightarrow+\infty\), \(\Delta_\omega=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega\pi)+O(1/\omega)\).
On appelle intervalle de divergence tout intervalle \(I\) de \(\mathbf{R}\) tel que : \(\forall\omega\in I\), \(|\Delta_\omega|>1\).
Soit \(\varepsilon>0\). Établir l’existence de \(X\in\mathbf{R}_+\) tel que, pour tout intervalle de divergence \(I\subset\left[X,+\infty\right[\), il existe un entier \(n\) tel que \(I\subset[n-\varepsilon,n+\varepsilon]\).
[examen/ex1383] polytechnique MP 2024 Pour \(f\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\), on pose \(H(f):x\mapsto x^2f(x)-f''(x)\), \(A_-(f):x\mapsto -f'(x)+xf(x)\) et \(A_+(f):x\mapsto f'(x)+xf(x)\).
[examen/ex1383]
Déterminer \(A_-\circ A_+\) et \(A_+\circ A_-\).
Montrer qu’il existe une unique \(\varphi_0\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) de carré intégrable, telle que \(H(\varphi_0)=\varphi_0\) et \(\varphi_0(0)=1\).
On pose, pour \(n\in\mathbf{N}^*\), \(\varphi_n=A_-^n(\varphi_0)\).
Montrer que, pour tout \(n\in\mathbf{N}\), \(H(\varphi_n)=(2n+1)\varphi_n\).
Montrer que \(\varphi_n\) s’écrit sous la forme \(P_n\times\varphi_0\) avec \(P_n\) polynomiale.
[concours/ex4044] polytechnique pox P 1990 Soit \(f(x)=\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\over x}\).
[concours/ex4044]
Trouver une équation différentielle linéaire, d’ordre \(2\), à coefficients polynomiaux, satisfaite par \(f\).
Résoudre cette équation.
[planches/ex1080] ens cachan, ens rennes MP 2016 Soient \(f\) dans \(\mathscr{C}^0([0,1],\mathbf{R}_-^*)\) et \((E)\) l’équation différentielle \(x''+f(t)x=0\) sur \([0,1]\).
[planches/ex1080]
Décrire la structure de l’ensemble des solutions de \((E)\), rappeler le théorème de Cauchy linéaire, mettre le système différentiel associé à \((E)\) sous forme matricielle.
Montrer que si \(x\) est solution de \((E)\) et vérifie \(x(0)=x(1)=0\) alors \(x=0\).
Montrer qu’il existe \(\varepsilon>0\) tel que pour toute solution de \((E)\), on ait : \[\varepsilon^2\int_0^1x(t)^2\,dt\leqslant\varepsilon\int_0^1x'(t)^2\,dt\leqslant\int_0^1(1-t)x(t)^2\,dt.\]
[planches/ex6022] polytechnique PC 2020 Soit \(f:\left[0,+\infty\right[\rightarrow\mathbf{R}\) dérivable, positive, décroissante et non intégrable sur \(\left[0,+\infty\right[\).
[planches/ex6022]
Soit \(y:\left[0,+\infty\right[\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^2\), non identiquement nulle et vérifiant \(y''+fy=0\).
Est-il possible d’avoir \(y\geqslant 0\) ? On pourra considérer \(E=fy^2+(y')^2\).
Soit \(t_0>0\) tel que \(y(t_0)=0\). Montrer qu’il existe \(\varepsilon>0\) tel que \(\forall t\in[t_0-\varepsilon,t_0+\varepsilon]\setminus\{t_0\}\), \(y(t)\neq 0\).
Déduire de la première question que \(y\) s’annule. Montrer que \(y\) admet une infinité de zéros. Comment interpréter le résultat d’un point de vue physique ?
[planches/ex1056] mines MP 2015 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+)\) et \(x\) une solution strictement positive de \(x''+q(t)x=0\). On pose \(f=x'/x\).
[planches/ex1056]
Donner une équation différentielle satisfaite par \(f\).
Montrer que \(f\) est décroissante positive.
Que peut-on dire de l’intégrabilité de \(q\) ?
[oraux/ex2981] centrale MP 2008 (avec Maple)
[oraux/ex2981]
Résoudre \(y''+\displaystyle{y\over x^2}=0\) sur \(\left[1,+\infty\right[\) à l’aide de Maple. Existe-t-il des solutions bornées ?
Soit \((E)\) : \(y''+\displaystyle{y\over x^2+4x+3}=0\). On se donne une solution \(f\) bornée de \((E)\) sur \(\left[1,+\infty\right[\). Montrer que \(f'\) admet une limite nulle en \(+\infty\). Existe-t-il des solutions non bornées sur \(\left[1,+\infty\right[\) ?
[oraux/ex4961] ens PC 2012 Soient \(a,b,c,d\) dans \({\cal C}^2(\mathbf{R}^+,\mathbf{R})\). On suppose : \(a>0\), \(c<0\) et \(d>0\). Soit \((E)\) l’équation différentielle : \(ay''+by'+cy=d\), \(y(0)=0\).
[oraux/ex4961]
Si \(y'(0)=0\), montrer que : \(\forall t\in\mathbf{R}^{+*}\), \(y(t)>0\).
On suppose qu’il existe \(t_1>0\) tel que \(y(t_1)>0\). Montrer : \(\forall t\geqslant t_1\), \(y(t)\geqslant 0\).
[planches/ex1079] ens paris, ens lyon, ens cachan, ens rennes MP 2016 Soient \(b\in\mathbf{R}_+^*\) et \(f\) une fonction continue définie sur \(\left[1,+\infty\right[\) telle que \(f(r)=O(r^{-b-2})\).
[planches/ex1079]
Soit \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{u'\over r}+{u\over r^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\) et préciser la vitesse de convergence.
Soient \(j>0\) de classe \(\mathscr{C}^1\) sur \(\left[1,+\infty\right[\) telle que \(j'\) tend vers 1 en \(+\infty\) et \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{j'\over j}u'+{u\over j^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\).
[planches/ex9268] ens saclay, ens rennes MP 2023 On considère l’équation différentielle \((D_{\lambda})\) : \(y'' + (\lambda-r)y =0\) avec \(\lambda \in \mathbb{R}\), \(r \in\mathscr{C}^{\infty}(I, \mathbb{R})\), où \(I\) est un intervalle contenant \([0, 1]\).
[planches/ex9268]
On considère \(E_{\lambda}\) l’espaces des solutions \(y\) de \((D_{\lambda})\) telles que \(y(0) = 0\), \(y(1) = 0\).
Quelles sont les dimensions possibles de \(E_{\lambda}\) ?
Caractériser le cas \(\mathop{\mathchoice{\hbox{dim}}{\hbox{dim}}{\mathrm{dim}}{\mathrm{dim}}}\nolimits(E_{\lambda}) = 1\). (On souhaite une condition portant sur \(y_{\lambda}\), solution du problème de Cauchy \((D_{\lambda})\), \(y_{\lambda}(0) = 0\), \(y_{\lambda}'(0) = 1\).)
Montrer que, à \(r\) fixé, les \(E_{\lambda}\) sont orthogonaux pour le produit scalaire \(\langle f, g \rangle = \displaystyle\int_{0}^{1} fg\).
On note \(N_\lambda\) le nombre de zéros de \(y_{\lambda}\) sur \([0, 1]\). Pourquoi est-il fini ?
Calculer \(N_{\lambda}\) dans le cas \(r = 0\), \(\lambda > 0\).
Dans le cas général, étudier le comportement de \(N_{\lambda}\).
[oraux/ex3146] polytechnique, ens cachan PSI 2011
[oraux/ex3146]
Donner un exemple de fonction continue, non identiquement nulle au voisinage de 0 et telle que 0 n’est pas un zéro isolé.
Soient \(f:\mathbf{R}\rightarrow\mathbf{R}\) dérivable et \(a\in\mathbf{R}\). On suppose que \(f(a)=0\) et que \(a\) n’est pas un zéro isolé de \(f\). Montrer que \(f'(a)=0\).
Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\), \(f:[a,b]\rightarrow\mathbf{R}\) dérivable telle que \(f(a)=f(b)=0\) et \(\forall x\in\left]a,b\right[\), \(f(x)\geqslant 0\). Montrer : \(f'(a)f'(b)\leqslant 0\).
Soient \(I\) un intervalle de \(\mathbf{R}\), \(p\) et \(q\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle : \(y''+py'+qy=0\).
Soit \(f\) une solution non identiquement nulle de \((E)\). Montrer que les zéros de \(f\) sont isolés.
Soient \(f\) et \(g\) deux solutions de \((E)\) et \(t_0\in I\). On suppose qu’il existe \(c\in\mathbf{R}\) tel que \(f(t_0)=cg(t_0)\) et \(f'(t_0)=cg'(t_0)\). Montrer : \(f=cg\).
Soient \(f\) et \(g\) deux solutions indépendantes de \((E)\). Montrer que le wronskien \(W\) de \(f\) et de \(g\) ne s’annule pas. Exprimer \(W(t)\) en fonction de \(W(t_0)\). Montrer que, entre deux zéros consécutifs de \(f\), la fonction \(g\) s’annule.
[concours/ex3119] polytechnique P 1993
[concours/ex3119]
Soit \(g\), \(k:[a,b]\rightarrow\mathbf{R}\) avec \(g\) continue et \(k\) de classe \(C^1\) ne s’annulant pas sur \([a,b]\) et \[(E)\quad(ky')'+gy=0.\]
Montrer que l’ensemble des zéros d’une solution non nulle de \((E)\) est fini.
Soit \(y_1\) et \(y_2\) deux solutions indépendantes de \((E)\). Montrer que si \(x_1\) et \(x_2>x_1\) sont deux zéros de \(y_1\), alors \(y_2\) s’annule sur \(\left]x_1,x_2\right[\).
Soit \(g_1\), \(g_2:[a,b]\rightarrow\mathbf{R}\) continues telles que \(g_1<g_2\), \[(E_j)\quad(ky')'+g_jy=0\quad(j=1,2)\] et \(u\) une solution non nulle de \(E_1\) s’annulant en \(x_1\) et \(x_2>x_1\). Montrer que toute solution de \((E_2)\) s’annule sur \(\left]x_1,x_2\right[\).
[planches/ex2136] mines MP 2017 Soient \(a\) et \(b\) continues et 1-périodiques, et soit \(y\) solution de \(y''+ay'+by=0\) telle que \(y(0)=y(1)=0\). Montrer que \(y\) s’annule en tout \(k\in\mathbf{Z}\).
[planches/ex2136]
[examen/ex1382] polytechnique MP 2024
[examen/ex1382]
Soit \(f\in \mathscr{C}^1([0,\pi], \mathbf{R})\) telle que \(f(0)=f(\pi)=0\). Montrer que \(\displaystyle\int_0^{\pi}f^2\leqslant\frac{\pi^2}{8}\int_0^{\pi}(f')^2\).
Soit \(f\), \(q\in \mathscr{C}^0([0,\pi], \mathbf{R})\) telle que \(\forall x\in[0,\pi]\), \(q(x)<\displaystyle\frac{8}{\pi^2}\). Soient \(a\), \(b\in \mathbf{R}\). Montrer qu’il existe une unique fonction \(y\in \mathscr{C}^2([0,\pi], \mathbf{R})\) telle que \(y''+qy=f\), \(y(0)=a\), \(y(\pi)=b\).
[planches/ex0965] centrale PSI 2013 Soit \(F\) l’espace vectoriel des fonctions continues et bornées sur \(\left]0,+\infty\right[\). Pour \(f\in F\), on considère l’équation différentielle \((E)\) : \(x^2y''+2y'-2y=f(x)\).
[planches/ex0965]
Trouver les fonctions \(x\mapsto x^r\) solutions de l’équation homogène associée à \((E)\).
Soit \(g(x)=\displaystyle\int_0^x{-tf(t)\over3x^2}\,dt+\int_x^{+\infty}{-xf(t)\over3t^2}\,dt\). Montrer que \(g\) est bien définie sur \(\left]0,+\infty\right[\) puis vérifier que \(g\) est solution de \((E)\).
Quel est le lien entre les deux questions précédentes ?
Montrer que l’application qui envoie \(f\) sur \(g\) définit un endomorphisme de \(F\).
Vous pouvez choisir la fonte des exercices lors de la compilation des PDF