[oraux/ex3012] polytechnique MP 2009 Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\) et \(f\in\mathscr{C}^0([a,b],\mathbf{R})\). On suppose qu’il existe \(u\) dans \(\mathscr{C}^2([a,b],\mathbf{R})\) non identiquement nulle telle que : \(u''+fu=0\) et \(u(a)=u(b)=0\). Montrer : \(\displaystyle\int_a^b|f(t)|\,dt\geqslant(b-a)/4\).
[oraux/ex3012]
[oraux/ex5392] mines MP 2012 Soit \(f\,:\;\mathbf{R}^{+*}\to\mathbf{R}\) continue. On considère l’équation différentielle \((E)\) \(y''=f\,y\).
[oraux/ex5392]
Montrer que les zéros des solutions non nulles sont isolés.
Soient \(\alpha\) et \(\beta\) deux zéros consécutifs d’une solution non nulle de \((E)\). Montrer : \[\int_\alpha^\beta\left|f(t)\right|\,dt>\frac4{\beta-\alpha}.\]
[concours/ex5477] polytechnique MP 2007 Soient \(f\in\mathscr{C}^1(\left]0,+\infty\right[,\mathbf{R})\) et \(g\) une solution de \((E)\) : \(y''+fy=0\), non identiquement nulle.
[concours/ex5477]
Montrer que les zéros de \(g\) sont isolés. Dans la suite, \(x_1\) et \(x_2\) sont deux zéros consécutifs de \(g\) vérifiant \(x_1<x_2\).
Montrer, si \(x\in[x_1,x_2]\) : \[\hskip-1cm(x_2-x)\int_{x_1}^x(t-x_1)f(t)g(t)\,dt+ (x-x_1)\int_x^{x_2}(x_2-t)f(t)g(t)\,dt =(x_2-x_1)g(x).\]
En déduire une minoration de \(\displaystyle\int_{x_1}^{x_2}|f(t)|\,dt\).
[planches/ex8133] mines MP 2022 Soit \(f:\mathbf{R}_+\longrightarrow\mathbf{R}_+\) continue. On se donne \(c\geqslant 0\), on pose \(F:x\longmapsto c+\displaystyle\int_0^xf(t)\,dt\) et on suppose que \(\forall x\in\mathbf{R}_+\), \(xf(x)\leqslant F(x)\).
[planches/ex8133]
Étudier les variations de \(x\longmapsto\displaystyle{F(x)\over x}\) sur \(\mathbf{R}_+^*\) et en déduire que \(f\) est bornée.
Soit \(g\) une solution sur \(\mathbf{R}_+\) de l’équation différentielle \(y''+xy=0\). En s’intéressant à \(g^2\), montrer que \(g\) est bornée.
[planches/ex1104] mines MP 2016 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^1\) telle que \(\forall x\in\mathbf{R}_+\), \(q(x)>0\) et \(q'(x)>0\). Montrer que les solutions de \(y''+qy=0\) sont bornées sur \(\mathbf{R}_+\).
[planches/ex1104]
Indication : Multiplier par \(y'/q\).
[concours/ex3679] mines M 1992 Montrer que toutes les solutions de \(y''+e^xy=0\) sont bornées sur \(\mathbf{R}_+\).
[concours/ex3679]
[equadiff/ex0881] Soit \((E)\) : \(y''+ay'+by=0\) une équation différentielle linéaire du deuxième ordre homogène à coefficients non forcément constants, de classe \(C^1\) sur l’intervalle \(I\).
[equadiff/ex0881]
Écrire l’équation \((E')\) transformé de \((E)\) en posant \(y=uz\).
Déterminer une équation différentielle simple que doit vérifier la fonction \(u\) de sorte de \((E')\) ne contienne plus de terme en \(z'\), et résoudre cette équation en \(u\).
Montrer que \((E')\) peut se mettre sous la forme : \(z''=cz\), et exprimer la fonction \(c\) en fonction de \(a\) et \(b\).
Déterminer \(u\) et \(c\) quand \(a\) et \(b\) sont constants.
[planches/ex3377] polytechnique, espci PC 2018 Soit \(q\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) telle que \(q>0\), \(q'>0\). Montrer que les solutions de l’équation différentielle \(y''+qy=0\) sont bornées sur \(\mathbf{R}_+\).
[planches/ex3377]
[oraux/ex3133] ens lyon MP 2011 Soit \(\varphi\) une solution maximale non identiquement nulle de \(y''+e^xy=0\).
[oraux/ex3133]
Montrer que \(\varphi\) est définie sur \(\mathbf{R}\).
Montrer que l’on peut ranger l’ensemble des zéros de \(\varphi\) sur \(\mathbf{R}_+\) en une suite strictement croissante \((x_n)_{n\in\mathbf{N}}\).
Montrer que \(x_{n+1}-x_n\rightarrow0\) quand \(n\rightarrow+\infty\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow+\infty\).
[oraux/ex3082] polytechnique MP 2010 Soit \(f:\mathbf{R}\rightarrow\mathbf{R}\) une solution non identiquement nulle de l’équation différentielle \((E)\) : \(y''+e^ty=0\). Montrer que \(f\) admet une infinité dénombrable de zéros.
[oraux/ex3082]
[planches/ex0932] polytechnique MP 2013 Soient \(a\in\left]0,\pi\right[\) et \(x\) la solution maximale du problème de Cauchy : \(x''=-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x)\), \(x(0)=a\), \(x'(0)=0\). Montrer que \(x\) est définie sur \(\mathbf{R}\) et \(\forall t\in\mathbf{R}\), \(|x(t)|\leqslant a\).
[planches/ex0932]
[equadiff/ex0157] On considère l’équation différentielle linéaire du second ordre : \[(E)\qquad a(x)y''+b(x)y'+c(x)y=f(x),\] où \(a\), \(b\), \(c\) et \(f\) sont continues sur le même domaine de \(\mathbf{R}\), \(a\) ne s’annulant pas sur ce domaine. On en cherche une solution sous la forme d’un produit de deux fonctions \(u\) et \(v\), i. e. \(y=uv\).
[equadiff/ex0157]
Déduire de cette égalité que \(u\) vérifie une équation différentielle : \[a_2u''+b_2u'+c_2u=f(x),\] dont les coefficients dépendent de \(x\) et de la fonction \(v\).
On choisit alors \(v\) pour pour que cette équation ne contienne pas \(u'\). En déduire une méthode d’intégration de \((E)\).
Application : résoudre sur \(\mathbf{R}_+^*\) l’équation différentielle : \[xy''+2y'-xy=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x,\] en remarquant qu’on peut prendre \(v(x)=\displaystyle{1\over x}\).
[planches/ex1009] mines MP 2014 Soit \((E)\) l’équation différentielle \[y''+e^xy=0.\]
[planches/ex1009]
Montrer que les solutions de \((E)\) sont bornées sur \(\mathbf{R}_+\).
Les solutions de \((E)\) sont-elles toutes bornées sur \(\mathbf{R}\) ?
[planches/ex8462] mines PC 2022
[planches/ex8462]
Soit \(f\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R}_+)\). On suppose qu’il existe \(c\geqslant 0\) tel que, pour tout \(x\in\mathbf{R}_+\), \(xf(x)\leqslant c+\displaystyle\int_0^xf(t)\,dt\). Montrer que \(f\) est bornée.
Soit \(y\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R})\) solution de \(y''+xy=0\). Montrer que \(y\) est bornée.
[oraux/ex3142] polytechnique MP 2011 Soit \(a\) dans \(\left]0,\pi\right[\).
[oraux/ex3142]
Déterminer \(y\) de classe \(C^2\) de \(\mathbf{R}\) dans \(\mathbf{R}\) telle que : \(y(0)=a\), \(y'(0)=0\), \(y''=-y\).
Soit \(x\) la solution maximale du problème de Cauchy \(x''=-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\), \(x(0)=a\), \(x'(0)=0\). Montrer que \(x\) est définie sur \(\mathbf{R}\) et bornée par \(a\) sur \(\mathbf{R}\).
Trouver \(C>0\) telle que : \(\forall t\in\mathbf{R}\), \(|x(t)-y(t)|\leqslant Ct^2\).
[planches/ex1596] ens PSI 2017 Soit \(f\in\mathscr{C}([0,1],\mathbf{R})\) et \(c\in\mathscr{C}([0,1],\mathbf{R}_+)\). On considère le problème aux limites : \[(1)\qquad-u''(x)+c(x)u(x)=f(x),\quad u(0)=u(1).\]
[planches/ex1596]
Pour \(\lambda\in\mathbf{R}\), on considère le système : \[(2)\qquad-u_\lambda(x)+c(x)u_\lambda(x)=f(x),\quad u_\lambda(0)=0,\quad u_\lambda(0)=\lambda.\] Montrer que \((2)\) possède une unique solution \(u_\lambda\) dans \(\mathscr{C}^2([0,1],\mathbf{R})\).
En déduire qu’il existe une unique solution de \((1)\) dans \(\mathscr{C}^2([0,1],\mathbf{R})\).
Indication : On pourra montrer que \(\varphi:\lambda\mapsto u_\lambda(1)\) est affine.
Montrer que si \(f\geqslant 0\), alors \(u\geqslant 0\).
[concours/ex1374] ens cachan MP 1998 Soient \(A\) et \(B\) dans \(\mathbf{R}^2\) euclidien, et \[E=\{u\in\mathscr{C}^1([0,1],\mathbf{R}^2)\mid u(0)=A,\ u(1)=B\}.\] Soit \(n\) une application de \(\mathbf{R}^2\) dans \(\mathbf{R}_+^*\), de classe \(C^2\). Pour \(u\in E\), on pose \(F(u)=\displaystyle\int_0^1n(u(t))\|u'(t)\|^2\,dt\). On suppose qu’il existe \(u_0\in E\) tel que \(F(u_0)=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits_{u\in E}F(u)\). Montrer que \(u_0\) est de classe \(C^2\) et trouver une équation différentielle vérifiée par \(u_0\).
[concours/ex1374]
[oraux/ex3113] centrale PSI 2010 Soit \(u\in\mathscr{C}^2([0,1],\mathbf{R})\) telle que : \(u''(x)+e^xu'(x)=-1\), \(u(0)=u(1)=0\).
[oraux/ex3113]
Montrer que \(u\) n’admet pas de minimum local sur \(\left]0,1\right[\).
Montrer que \(u'(0)>0\) et \(u'(1)<0\).
Montrer que \(u\) existe et est unique. Exprimer \(u\) à l’aide d’intégrales.
[planches/ex0989] ens paris, ens lyon, ens cachan, ens rennes MP 2014 Soient \(a>0\) et \(f\in\mathscr{C}^1(\left[1,+\infty\right[,\mathbf{R}_+^*)\) telle que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{+\infty}f'=a\). On considère \(u\in\mathscr{C}^2(\left[1,+\infty\right[,\mathbf{R})\) bornée et solution de l’équation différentielle \((E)\) : \(y''-\displaystyle{f'\over f}y'-{y\over f^2}=0\).
[planches/ex0989]
Montrer que \(u'(x)=O(1/x)\) quand \(x\rightarrow+\infty\).
Montrer que \(u(x)\rightarrow0\) quand \(x\rightarrow+\infty\).
[oraux/ex3108] centrale MP 2010 Soit \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{C})\) telle que \(t\mapsto tq(t)\) est intégrable sur \(\mathbf{R}_+\).
[oraux/ex3108]
Justifier l’existence de \(a\in\mathbf{R}_+\) tel que \(\displaystyle\int_a^{+\infty}|tq(t)|\,dt\leqslant 1/2\).
Montrer qu’il existe une suite \((y_n)_{n\geqslant 0}\) de fonctions continues et bornées de \(\left[a,+\infty\right[\) vers \(\mathbf{C}\) telles que : \(y_0=1\) et \(\forall n\in\mathbf{N}^*\), \(\forall x\in\left[a,+\infty\right[\), \(y_n(x)=1+\displaystyle\int_x^{+\infty}(t-x)q(t)y_{n-1}(t)\,dt\).
Montrer que \((y_n)\) converge uniformément vers une solution de \((E_a)\) : \(y''(t)+q(t)y(t)=0\), \(t\geqslant a\).
Montrer que l’équation \((E_0)\) : \(y''(t)+q(t)y(t)=0\), \(t\geqslant 0\), possède une solution \(Y\) telle que \(Y(t)\rightarrow1\) quand \(t\rightarrow+\infty\).
En déduire le comportement à l’infini des solutions de \((E_0)\) selon qu’elles sont, ou ne sont pas, bornées.
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'une filière en particulier