[planches/ex1096] polytechnique, ens cachan PSI 2016 Soit \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+^*)\). On cherche s’il existe des solutions non nulles bornées de l’équation \((E)\) : \(y''-q(x)y=0\).
[planches/ex1096]
Soit \(f\) une solution non nulle de \((E)\). Montrer qu’on peut supposer l’existence d’un réel \(a\) tel que \(f(a)>0\) et \(f'(a)>0\).
Montrer que, pour tout \(x\geqslant a\), \(f'(x)\geqslant f'(a)\).
Conclure.
[planches/ex0966] centrale PSI 2013 (avec Maple)
[planches/ex0966]
Maple
Soient \(g:\left]0,+\infty\right[\rightarrow\mathbf{R}\) continue et \((E)\) l’équation différentielle : \(y''-2y'+y=g\).
Quelle est la structure de l’ensemble des solutions de \((E)\) ?
Déterminer cet ensemble avec \(g:x\mapsto1/x^2\). Les solutions obtenues sont-elles prolongeables par continuité à droite en 0 ?
Déterminer l’ensemble des solutions de \((E)\) pour \(g:x\mapsto-\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x\). Les solutions obtenues sont-elles prolongeables par continuité à droite en 0 ? Les solutions obtenues sont-elles prolongeables de classe \(\mathscr{C}^1\) en 0 ?
Soit \(S\) l’ensemble des solutions de classe \(\mathscr{C}^0\) de \((E)\) et \(S_1\) le sous-ensemble de \(S\) formé des solutions de classe \(\mathscr{C}^1\). Trouver une condition nécessaire et suffisante sur \(g\) pour que \(S=S_1\).
Dans cette question, \(g=g_\alpha:x\mapsto x^\alpha\). Déterminer les \(\alpha\) pour lesquels \(S_1=S\).
Montrer qu’il existe une unique solution de \((E)\) telle que \(y(0)=y'(0)=0\).
[oraux/ex3169] centrale MP 2011 Soient \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R}_+)\) et \(E\) l’ensemble des solutions de l’équation \(y''-qy=0\).
[oraux/ex3169]
Justifier l’existence de la solution \(y_s\) telle que \(y_s(0)=1\) et \(y'_s(0)=s\).
Montrer que si \(y\in E\) alors \(y^2\) est convexe.
Montrer que \(y_1\geqslant 1\) sur \(\mathbf{R}_+\) puis que \(\displaystyle{1\over y_1^2}\) est intégrable sur \(\mathbf{R}_+\).
Montrer que \(Y:x\mapsto y_1(x)\displaystyle\int_x^{+\infty}{dt\over y_1(t)^2}\) est une solution bornée de \(E\).
Indication : Montrer que \(\displaystyle\int_x^{+\infty}{dt\over y_1(t)^2}\leqslant\displaystyle\int_x^{+\infty}{y_1'(t)\over(y_1-t)^2}\,dt\).
Montrer qu’il existe un unique \(s_0\in\mathbf{R}\) tel que \(y_{s_0}\) ne s’annule pas et soit bornée sur \(\mathbf{R}_+\). Montrer que \(y_{s_0}\) et sa dérivée convergent en \(+\infty\).
Que dire de la limite de \(y_s\) si \(s>s_0\) ? si \(s<s_0\) ?
[oraux/ex2955] polytechnique MP 2008 Soit \(q\) une fonction réelle continue sur \(\mathbf{R}\) et ne prenant que des valeurs strictement négatives. On considère l’équation différentielle \(x''+q(t)x=0\).
[oraux/ex2955]
Montrer que la seule solution bornée sur \(\mathbf{R}\) est la fonction nulle.
Montrer qu’une solution non nulle s’annule au plus une fois sur \(\mathbf{R}\).
[oraux/ex5641] centrale MP 2012 Soient \(q\in{\cal C}^0(\mathbf{R},\mathbf{R}^-)\) non identiquement nulle, \((a,b)\in (\mathbf{R}^{+*})^2\) et \((E)\) l’équation différentielle : \(y''+q\,y=0\).
[oraux/ex5641]
Justifier l’existence d’une unique solution \(y_0\) de \((E)\) vérifiant \(y_0(0)=a\) et \(y'_0(0)=0\).
Résoudre l’équation différentielle \(Y''-b^2\,Y=0\) avec \(Y(0)=a\) et \(Y'(0)=0\).
Montrer que \(y_0^2\) est convexe.
La fonction \(y_0\) admet-elle deux zéros distincts ? Est-elle bornée ?
Montrer que \(y_0\) est minorée par \(a\) et convexe.
On suppose \(q\leqslant-b^2\). Montrer que \(y_0\geqslant Y\).
[equadiff/ex0107] Soit l’équation \(x''+q(t)x=0\) avec \(q\) continue et négative sur \(\mathbf{R}\). Montrer qu’une solution de \((E)\) qui admet deux zéros est identiquement nulle.
[equadiff/ex0107]
[oraux/ex3122] centrale PC 2010 Soient \(I\) un intervalle de \(\mathbf{R}\), \(q\in\mathscr{C}^0(I,\mathbf{R}_-^*)\) et \((E)\) l’équation différentielle \(y''+qy=0\).
[oraux/ex3122]
Si \(f\) est solution de \(E\), montrer que \(f^2\) est convexe.
Montrer que toute solution non identiquement nulle de \((E)\) s’annule au plus une fois.
[concours/ex1319] mines MP 1998 Soit \(I\) un intervalle non vide de \(\mathbf{R}\), et \(p\in\mathscr{C}(I,\mathbf{C})\). Soit \(u\) une solution de \(y''+py=0\).
[concours/ex1319]
On suppose que, pour tout \(t\in I\), \(\mathop{\mathchoice{\hbox{Re}}{\hbox{Re}}{\mathrm{Re}}{\mathrm{Re}}}\nolimits p(t)\leqslant 0\). Montrer que si \(u\) s’annule deux fois sur \(I\), alors \(u=0\).
On suppose que pour tout \(t\in I\), \(\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits p(t)\neq0\). Montrer que si \(u\) s’annule deux fois sur \(I\), alors \(u=0\).
[oraux/ex2819] ens cachan 2004 Considérons l’équation différentielle : \(y''+a(t)y'+b(t)y=0\) où \(a\) et \(b\) sont des fonctions réelles continues. Soit \(y_1\) et \(y_2\) deux solutions linéairement indépendantes.
[oraux/ex2819]
Montrer que les zéros de \(y_1\) sont isolés et qu’entre deux zéros de \(y_1\) il y a un unique zéro de \(y_2\).
Soit l’équation différentielle \(y''+q(t)y=0\) où \(q\) est continue négative. Soit \(y\) une solution non constante ; montrer que \(y\) a au plus un zéro.
[planches/ex0935] polytechnique, ens cachan PSI 2013 Soit \((E)\) l’équation différentielle : \(y''(x)+q(x)y(x)=0\) où \(q\) est une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\), non identiquement nulle et négative.
[planches/ex0935]
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution positive de \((E)\) sur \(\mathbf{R}\). Montrer que \(y\) est convexe.
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution de \((E)\) sur \(\mathbf{R}\). Montrer que \(y^2\) est convexe.
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution bornée de \((E)\) sur \(\mathbf{R}\). Montrer que \(y\) est identiquement nulle.
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution de \((E)\) sur \(\mathbf{R}\) telle que \(y(0)=1\) et \(y'(0)=0\).
Montrer que pour tout \(x\in\mathbf{R}\), \(|y(x)|\geqslant 1\), puis \(y(x)\geqslant 1\).
Montrer que \(y\) est convexe.
[concours/ex1714] polytechnique MP 1999 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue, positive et \(y\) solution de \((E)\) : \(y''(x)=q(x)y(x)\).
[concours/ex1714]
Montrer que \(y^2\) est convexe. Peut-elle être bornée ?
On suppose que \(y\) n’est pas nulle. Montrer que \(y\) et \(y'\) s’annulent au plus une fois.
Montrer que \(\displaystyle{y^2(x)\over x}\) a une limite finie en \(+\infty\).
[oraux/ex3097] mines PC 2010 Soient \(a\), \(b\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((f,g)\) un système fondamental de solutions de l’équation différentielle \((E)\) : \(y''+ay'+by=0\). On suppose \(f\) paire et \(g\) impaire. Montrer que \(a\) est impaire et \(b\) est paire.
[oraux/ex3097]
[planches/ex2138] mines MP 2017 Soient \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\). À quelle condition l’équation différentielle \(y''(t)+a(t)y'(t)+b(t)y(t)=0\) admet-elle une base formée d’une fonction paire et d’une fonction impaire ?
[planches/ex2138]
[planches/ex0953] mines PC 2013 Soient \(a\), \(b\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \[(E)\ :\quad y''+a(x)y'+b(x)y=0.\] Montrer que \((E)\) possède un système fondamental \((f,g)\) de solutions avec \(f\) paire et \(g\) impaire si et seulement si \(a\) est impaire et \(b\) est paire.
[planches/ex0953]
[concours/ex3236] mines M 1993 Soit \(u\) une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\) et \(f\) une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}_+\). On suppose qu’il existe une constante \(A\) telle que, pour tout \(x\) de \(\mathbf{R}_+\), \[u(x)\leqslant A+\int_0^xf(t)u(t)\,dt.\] Montrer que \[u(x)\leqslant A\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\int_0^xf(t)\,dt\right).\] Soit \((E)\) l’équation différentielle : \(y''+y(1+g(t))=0\), où \(g\) est une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\) telle que \(\displaystyle\int_0^{+\infty}\bigl|g(t)\bigr|\,dt\) converge. Montrer que toute solution de \(E\) est bornée.
[concours/ex3236]
[planches/ex2825] tpe PC 2017 Soient \(I\) un intervalle symétrique par rapport à l’origine et \(\varphi\) une fonction réelle, paire, de classe \(\mathscr{C}^\infty\) sur \(I\). Soit \((E)\) l’équation différentielle \(y''+\varphi y=0\). Montrer que si \(y\) est solution de \((E)\), alors \(y\) est de classe \(\mathscr{C}^\infty\) sur \(I\). Montrer que \(x\longmapsto y(-x)\) est également solution.
[planches/ex2825]
[planches/ex1066] centrale PSI 2015 Soit \(a\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) telle que l’intégrale \(\displaystyle\int_0^{+\infty}|a(x)|\,dx\) existe.
[planches/ex1066]
A-t-on nécessairement \(a(x)\mathrel{\mathop{\longrightarrow}\limits_{x\rightarrow+\infty}}0\) ?
Soit \(f\) vérifiant sur \(\mathbf{R}_+\) : \(y''(x)+(1+a(x))y(x)=0\). Soit \[g:x\in\mathbf{R}_+\mapsto f(x)+\int_0^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)a(t)f(t)\,dt.\] Montrer que \(g\) est de classe \(\mathscr{C}^2\) sur \(\mathbf{R}_+\), puis que \(g''+g=0\).
Montrer qu’il existe \(c\in\mathbf{R}_+\) tel que : \(\forall x\in\mathbf{R}_+\), \(|f(x)|\leqslant c+\displaystyle\int_0^x|a(t)|\,|f(t)|\,dt\).
Montrer que toutes les solutions de \(y''+(1+a)y=0\) sont bornées.
[planches/ex0928] polytechnique MP 2013 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue et intégrable. Montrer que toute solution de l’équation différentielle \(y''+(1+q(t))y=0\) est bornée sur \(\mathbf{R}\).
[planches/ex0928]
[planches/ex1109] centrale MP 2016
[planches/ex1109]
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(q_2\geqslant q_1\), \(u\) (resp. \(v\)) une solution non identiquement nulle de \(y_1''+q_1y=0\) (resp. \(y''+q_2y=0\)), \(a\) et \(b\) deux zéros consécutifs de \(u\). Montrer que soit \(v/u\) est constante sur \(\left]a,b\right[\), soit \(v\) s’annule sur \(\left]a,b\right[\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}_-\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
Soient \(c\) et \(d\) deux éléments de \(\mathbf{R}_+^*\) tels que \(c<d\), \(q\) une fonction continue de \(\mathbf{R}\) dans \([c^2,d^2]\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
[oraux/ex3074] ens lyon MP 2010 Soient \(p\) et \(q\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(p\leqslant q\) et \(f\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) non identiquement nulle telle que \(f''+pf=0\).
[oraux/ex3074]
Montrer que les zéros de \(f\) sont isolés.
Soient \(x_1<x_2\) deux zéros consécutifs de \(f\) et \(g\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) telle que \(g''+qg=0\). Montrer que \(g\) s’annule sur \([x_1,x_2]\).
Vous pouvez signaler le nombre d'énoncés visibles sur chaque page de résultats