[planches/ex6826] mines MP 2021 Soient \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \(S\) l’ensemble des solutions de \(y''+fy=0\). On suppose \(f\) intégrable sur \(\mathbf{R}\).
[planches/ex6826]
Soient \(y_1\), \(y_2\in S\) et \(w=y_1y_2'-y_1'y_2\). Que peut-on dire de \(w\) ?
Montrer que \(S\) contient des fonctions non bornées.
[planches/ex1073] tpe PSI 2015 Soit l’équation différentielle \[(E)\quad y''+f(x)y=0,\] où \(f\) est continue et intégrable sur \(\mathbf{R}\).
[planches/ex1073]
Montrer que si \(y_1\) et \(y_2\) sont solutions de \((E)\) alors \(y_1'y_2-y_2'y_1\) est constante.
Montrer que si \(y\) est une solution de \(E\) bornée sur \(\mathbf{R}\) alors \(y'(x)\) admet une limite finie quand \(x\) tend vers \(+\infty\), puis montrer que cette limite est nulle.
Montrer que \((E)\) admet une solution non bornée.
[planches/ex1093] polytechnique MP 2016 Soit \(q\) une fonction continue et intégrable de \(\mathbf{R}\) dans \(\mathbf{R}\). Montrer que l’équation différentielle \(y''+qy=0\) admet des solutions non bornées.
[planches/ex1093]
[planches/ex0995] polytechnique MP 2014 Soient \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) intégrable et \((E)\) : \(y''+q(x)y=0\).
[planches/ex0995]
Montrer que si \(y\) est une solution bornée, alors \(y'\) tend vers 0 à l’infini.
Montrer qu’il existe des solutions non bornées.
[equadiff/ex0092] Soit \((E)\) l’équation \(x''+q(t)x=0\) où \(q\) est une fonction continue sommable sur \(\mathbf{R}_+\).
[equadiff/ex0092]
Montrer que le wronskien de deux solutions est constant.
Montrer que \((E)\) admet des solutions non bornées.
[oraux/ex2800] centrale 2003 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) une application continue et intégrable sur \(\mathbf{R}_+\). Soit \((E)\) l’équation différentielle \(y''+qy=0\).
[oraux/ex2800]
Si \(y\) est une solution bornée de \((E)\), que dire de \(y'\) en \(+\infty\) ?
Montrer qu’il existe des solutions de \((E)\) non bornées.
[concours/ex4169] mines M 1990 Soit \(f\in\mathscr{C}(\mathbf{R}_+,\mathbf{R})\) telle que \(\displaystyle\int_0^{+\infty}\left|f\right|\) converge. L’équation \(y''+fy=0\) a-t-elle toutes ses solutions bornées ?
[concours/ex4169]
[concours/ex0283] mines MP 1996 On considère une application continue \(p:\left[0,+\infty\right[\rightarrow\left[0,+\infty\right[\) telle que \(\displaystyle\int_0^{+\infty}p(t)\,dt\) converge et l’équation différentielle \((E)\) : \(y''-p(x)y=0\).
[concours/ex0283]
Montrer que si \(y\) est une solution bornée de \(E\), alors \(y'\) admet une limite finie, que l’on déterminera, en \(+\infty\).
[equadiff/ex0088] Montrer comment on peut résoudre une équation différentielle (d’Euler) de la forme \[(E)\quad x^2y''+axy'+by=0\] à l’aide du changement de variable \(t=\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits|x|\).
[equadiff/ex0088]
[oraux/ex3071] tpe PC 2009 Résoudre : \(x^2y''+axy'+by=0\).
[oraux/ex3071]
[oraux/ex2913] ccp PC 2005 Soient \((a,b,c)\in\mathbf{R}^3\) et \((1)\) l’équation différentielle : \(ax^2y''(x)+bxy'(x)+cy(x)=0\), dont on considérera les solutions sur \(\left]0,+\infty\right[\).
[oraux/ex2913]
Justifier le changement de variable \(t=\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x\) et résoudre \((1)\).
Résoudre sur \(\mathbf{R}_+^*\) suivant les valeurs de \(a\) : \(x^2y''(x)+xy'(x)+y(x)=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(a\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x)\).
[equadiff/ex0880] Équation d’Euler
[equadiff/ex0880]
On considère : \[(E)\qquad x^2y''+a\,xy'+by=c(x),\] avec \(a\), \(b\in\mathbf{R}\). On pose \(x=\varepsilon e^t\) avec \(\varepsilon=\pm1\) et \(y(x)=z(t)\).
Montrer que l’équation différentielle en \(z\), transformée de \((E)\) par ce changement de variable, est à coefficients constants.
Résoudre par exemple \(x^2y''-5xy'+9y=x+1\).
[oraux/ex3169] centrale MP 2011 Soient \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R}_+)\) et \(E\) l’ensemble des solutions de l’équation \(y''-qy=0\).
[oraux/ex3169]
Justifier l’existence de la solution \(y_s\) telle que \(y_s(0)=1\) et \(y'_s(0)=s\).
Montrer que si \(y\in E\) alors \(y^2\) est convexe.
Montrer que \(y_1\geqslant 1\) sur \(\mathbf{R}_+\) puis que \(\displaystyle{1\over y_1^2}\) est intégrable sur \(\mathbf{R}_+\).
Montrer que \(Y:x\mapsto y_1(x)\displaystyle\int_x^{+\infty}{dt\over y_1(t)^2}\) est une solution bornée de \(E\).
Indication : Montrer que \(\displaystyle\int_x^{+\infty}{dt\over y_1(t)^2}\leqslant\displaystyle\int_x^{+\infty}{y_1'(t)\over(y_1-t)^2}\,dt\).
Montrer qu’il existe un unique \(s_0\in\mathbf{R}\) tel que \(y_{s_0}\) ne s’annule pas et soit bornée sur \(\mathbf{R}_+\). Montrer que \(y_{s_0}\) et sa dérivée convergent en \(+\infty\).
Que dire de la limite de \(y_s\) si \(s>s_0\) ? si \(s<s_0\) ?
[oraux/ex2955] polytechnique MP 2008 Soit \(q\) une fonction réelle continue sur \(\mathbf{R}\) et ne prenant que des valeurs strictement négatives. On considère l’équation différentielle \(x''+q(t)x=0\).
[oraux/ex2955]
Montrer que la seule solution bornée sur \(\mathbf{R}\) est la fonction nulle.
Montrer qu’une solution non nulle s’annule au plus une fois sur \(\mathbf{R}\).
[planches/ex1096] polytechnique, ens cachan PSI 2016 Soit \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+^*)\). On cherche s’il existe des solutions non nulles bornées de l’équation \((E)\) : \(y''-q(x)y=0\).
[planches/ex1096]
Soit \(f\) une solution non nulle de \((E)\). Montrer qu’on peut supposer l’existence d’un réel \(a\) tel que \(f(a)>0\) et \(f'(a)>0\).
Montrer que, pour tout \(x\geqslant a\), \(f'(x)\geqslant f'(a)\).
Conclure.
[equadiff/ex0107] Soit l’équation \(x''+q(t)x=0\) avec \(q\) continue et négative sur \(\mathbf{R}\). Montrer qu’une solution de \((E)\) qui admet deux zéros est identiquement nulle.
[equadiff/ex0107]
[oraux/ex3122] centrale PC 2010 Soient \(I\) un intervalle de \(\mathbf{R}\), \(q\in\mathscr{C}^0(I,\mathbf{R}_-^*)\) et \((E)\) l’équation différentielle \(y''+qy=0\).
[oraux/ex3122]
Si \(f\) est solution de \(E\), montrer que \(f^2\) est convexe.
Montrer que toute solution non identiquement nulle de \((E)\) s’annule au plus une fois.
[oraux/ex2819] ens cachan 2004 Considérons l’équation différentielle : \(y''+a(t)y'+b(t)y=0\) où \(a\) et \(b\) sont des fonctions réelles continues. Soit \(y_1\) et \(y_2\) deux solutions linéairement indépendantes.
[oraux/ex2819]
Montrer que les zéros de \(y_1\) sont isolés et qu’entre deux zéros de \(y_1\) il y a un unique zéro de \(y_2\).
Soit l’équation différentielle \(y''+q(t)y=0\) où \(q\) est continue négative. Soit \(y\) une solution non constante ; montrer que \(y\) a au plus un zéro.
[concours/ex1714] polytechnique MP 1999 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue, positive et \(y\) solution de \((E)\) : \(y''(x)=q(x)y(x)\).
[concours/ex1714]
Montrer que \(y^2\) est convexe. Peut-elle être bornée ?
On suppose que \(y\) n’est pas nulle. Montrer que \(y\) et \(y'\) s’annulent au plus une fois.
Montrer que \(\displaystyle{y^2(x)\over x}\) a une limite finie en \(+\infty\).
[planches/ex0966] centrale PSI 2013 (avec Maple)
[planches/ex0966]
Maple
Soient \(g:\left]0,+\infty\right[\rightarrow\mathbf{R}\) continue et \((E)\) l’équation différentielle : \(y''-2y'+y=g\).
Quelle est la structure de l’ensemble des solutions de \((E)\) ?
Déterminer cet ensemble avec \(g:x\mapsto1/x^2\). Les solutions obtenues sont-elles prolongeables par continuité à droite en 0 ?
Déterminer l’ensemble des solutions de \((E)\) pour \(g:x\mapsto-\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x\). Les solutions obtenues sont-elles prolongeables par continuité à droite en 0 ? Les solutions obtenues sont-elles prolongeables de classe \(\mathscr{C}^1\) en 0 ?
Soit \(S\) l’ensemble des solutions de classe \(\mathscr{C}^0\) de \((E)\) et \(S_1\) le sous-ensemble de \(S\) formé des solutions de classe \(\mathscr{C}^1\). Trouver une condition nécessaire et suffisante sur \(g\) pour que \(S=S_1\).
Dans cette question, \(g=g_\alpha:x\mapsto x^\alpha\). Déterminer les \(\alpha\) pour lesquels \(S_1=S\).
Montrer qu’il existe une unique solution de \((E)\) telle que \(y(0)=y'(0)=0\).
La plupart des textes affichés provoquent l'apparition de bulles d'aide au passage de la souris