[planches/ex6387] ens lyon PC 2021 Pour \(\varphi_1\) et \(\varphi_2\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\), on pose \(W=\left|\matrix{\varphi_1&\varphi'_1\cr\varphi_2&\varphi'_2}\right|\).
[planches/ex6387]
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\). Soient \(\varphi_1\) et \(\varphi_2\) deux solutions de l’équation différentielle \(y''+qy=0\). Que dire de la fonction \(W\) ?
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\). Soit \(\varphi_1\) une solution de \(y''+q_1y=0\) et \(\varphi_2\) une solution de \(y''+q_2y=0\). Calculer \(W'\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\). On suppose que \(q\) est minorée par un réel strictement positif \(\alpha\). Montrer que toute solution de l’équation différentielle \(y''+qy=0\) s’annule une infinité de fois.
[concours/ex4064] polytechnique P 1990 Conditions nécessaires et suffisantes sur les fonctions \(p\) et \(q\), supposées continues sur \(\mathbf{R}\), pour que l’équation différentielle \[x''+p(t)x'+q(t)x=0\] admette deux solutions, \(x_1\) et \(x_2\), telles que :
[concours/ex4064]
\(\forall t\in\mathbf{R}^*\quad x_1(t)\neq0\) ;
\(\forall t\in\mathbf{R}\quad x_2(t)=tx_1(t)\).
[oraux/ex3050] centrale MP 2009 Soient \(I\) un intervalle de \(\mathbf{R}\), \(a\in\mathscr{C}^1(I,\mathbf{R})\), \(b\in\mathscr{C}^0(I,\mathbf{R})\) et \((H)\) l’équation différentielle \(y''+ay'+by=0\).
[oraux/ex3050]
Donner une condition nécessaire et suffisante sur \(a\) et \(b\) pour qu’il existe deux solutions \(y_1\) et \(y_2\) de \((H)\) telles que \(x_2=xy_1\) et \(y_1\neq0\).
Déterminer alors toutes les solutions de \((H)\).
[oraux/ex3103] mines PC 2010 Soit \(\varphi\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R}_+^*)\) strictement croissante. Montrer que toute solution de l’équation différentielle \((E)\) : \(y''+\varphi y=0\) est bornée sur \(\mathbf{R}\).
[oraux/ex3103]
[planches/ex3693] mines PSI 2018
[planches/ex3693]
Soit \(y:[a,b]\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^1\), \(\varphi:[a,b]\rightarrow\mathbf{R}_+\) continue et \(c\in\mathbf{R}\) tels que \(\forall x\in[a,b]\), \(y(x)\leqslant c+\displaystyle\int_a^x\varphi(t)y(t)\,dt\).
Montrer que, pour tout \(x\in[a,b]\), \(y(x)\leqslant c\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\displaystyle\int_a^x\varphi(t)\,dt\right)\).
Soit \(q\) une fonction de classe \(\mathscr{C}^1\) de \(\mathbf{R}_+\) dans \(\mathbf{R}_+^*\), croissante, et \(f\) une solution de l’équation \(f''+qf=0\). Montrer que \(f\) est bornée.
[oraux/ex5532] mines PC 2012 Soient \(\varphi\in{\cal C}^1(\mathbf{R}^+,\mathbf{R}^{+*})\) croissante et \((E)\) l’équation \((E)\) : \(x''(t)+\varphi(t)\, x(t)=0\). Montrer que \(x\) est bornée.
[oraux/ex5532]
Indication : On multipliera par \(x'/\varphi\).
[planches/ex1114] centrale PSI 2016 On considère l’équation différentielle \[(1)\quad y''=(1+x^4)y.\]
[planches/ex1114]
Montrer que \((1)\) possède une unique solution \(y\) telle que \(y(0)=y'(0)=1\).
Soit \(f\) une solution de \((1)\). On suppose \(\displaystyle{1\over f^2}\) intégrable. Montrer que \(x\mapsto\displaystyle\int_x^{+\infty}{1\over f^2(t)}\,dt\) est également solution de \((1)\) (?).
Montrer que si \(f\) solution de \((E)\) vérifie \(f(0)=f'(0)=1\) alors \(\displaystyle{1\over f^2}\) est intégrable.
[planches/ex1115] centrale PSI 2016 On considère l’équation différentielle \(y''=x^4y\) (?).
[planches/ex1115]
Montrer qu’il existe une unique solution \(f\) telle que \(f(0)=f'(0)=1\).
On admet que \(1/f^2\) est définie et intégrable sur \(\mathbf{R}_+\). Montrer que \(g:x\mapsto f(x)\displaystyle\int_x^{+\infty}{dt\over f(t)^2}\) est aussi solution de l’équation étudiée.
Montrer le résultat admis dans la question précédente.
[planches/ex6508] polytechnique MP 2021 Soit \(q\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\). On suppose que \(q'\) est intégrable sur \(\mathbf{R}_+\) et que \(q(t)\rightarrow0\) quand \(t\rightarrow+\infty\). Montrer que les solutions de \(y''+(q+1)y=0\) sont bornées sur \(\mathbf{R}_+\).
[planches/ex6508]
[oraux/ex2901] centrale PSI 2005 Soit \(E\) l’ensemble des \(f\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R})\) telles que : \(\forall x\in\mathbf{R}\), \(f''(x)-(1+x^4)f(x)=0\).
[oraux/ex2901]
Montrer que \(E\) contient une unique fonction \(f_0\) telle que \(f_0(0)=1\) et \(f_0'(0)=1\).
Montrer que \(f_0^2\) est convexe.
Montrer que : \(\forall t\in\mathbf{R}_+\), \(f_0(t)\geqslant 1\).
Montrer que \(1/f_0^2\) est intégrable sur \(\mathbf{R}_+\).
Soit \(f_1:x\in\mathbf{R}_+\mapsto f_0(x)\displaystyle\int_x^{+\infty}{dt\over f_0^2(t)}\).
Montrer que \(f_1\in E\).
Montrer que \(f_1'\geqslant 0\) et que \(f_1\) est bornée.
Quels sont les éléments bornés de \(E\) ?
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'un concours particulier