[planches/ex4013] centrale PC 2018 (avec Python)
[planches/ex4013]
Python
Soit \((E)\) : \(x''(t)+p(t)x'(t)+q(t)x(t)=0\).
On prend \(p(t)=\displaystyle{t\over1+t^2}\) et \(q(t)=\displaystyle{-1\over1+t^2}\). Ainsi \((E)\) devient \((1+t^2)x''+tx'-x=0\).
Représenter sur \([0,5]\) les solutions \((f,g)\) de \((E)\) vérifiant \((f(0),f'(0))=(1,0)\) et \((g(0),g'(0))=(0,1)\).
En déduire une solution évidente.
Montrer que \(g\) est développable en série entière au voisinage de 0.
On a \(g(t)=\displaystyle\sum\limits_{n=0}^{+\infty}c_nt^{2n}\). Trouver une relation de récurrence entre les \(c_n\) et en déduire \(g\).
Montrer que \((E)\) possède deux solutions inverses l’une de l’autre.
On suppose maintenant que \((E)\) admet deux solutions \(u\) et \(v\) avec \(v=1/u\). Exprimer \(p\) et \(q\) en fonction de \(u\). En déduire une relation entre \(p\) et \(q\).
[concours/ex0100] polytechnique MP 1996 Soit \(I\) un intervalle de \(\mathbf{R}\) et \(A\) (resp. \(B\)) une application \(C^1\) (resp. \(C^0\)) de \(I\) dans \(\mathbf{R}\). Donner une condition nécessaire et suffisante pour que l’équation différentielle \(y''+A(x)y'+B(x)y=0\) admette deux solutions \(y_1\) et \(y_2\) telles que \(y_2=xy_1\).
[concours/ex0100]
Résoudre \(y''+2xy'+(1+x^2)y=xe^{-x^2/2}\).
[oraux/ex5532] mines PC 2012 Soient \(\varphi\in{\cal C}^1(\mathbf{R}^+,\mathbf{R}^{+*})\) croissante et \((E)\) l’équation \((E)\) : \(x''(t)+\varphi(t)\, x(t)=0\). Montrer que \(x\) est bornée.
[oraux/ex5532]
Indication : On multipliera par \(x'/\varphi\).
[oraux/ex3103] mines PC 2010 Soit \(\varphi\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R}_+^*)\) strictement croissante. Montrer que toute solution de l’équation différentielle \((E)\) : \(y''+\varphi y=0\) est bornée sur \(\mathbf{R}\).
[oraux/ex3103]
[oraux/ex2949] ens paris MP 2008 Soit \(g\in\mathscr{C}^0(\mathbf{R}_+^*,\mathbf{R}_+^*)\). On suppose qu’il existe \(m>0\) tel que \(g\geqslant m\). Soit \(f:\mathbf{R}_+^*\rightarrow\mathbf{R}\) une solution non nulle de : \(y''+gy=0\).
[oraux/ex2949]
Montrer que \(f\) admet une infinité de zéros.
On suppose \(g\) croissante. Montrer que \(f\) est majorée au voisinage de \(+\infty\).
[planches/ex3693] mines PSI 2018
[planches/ex3693]
Soit \(y:[a,b]\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^1\), \(\varphi:[a,b]\rightarrow\mathbf{R}_+\) continue et \(c\in\mathbf{R}\) tels que \(\forall x\in[a,b]\), \(y(x)\leqslant c+\displaystyle\int_a^x\varphi(t)y(t)\,dt\).
Montrer que, pour tout \(x\in[a,b]\), \(y(x)\leqslant c\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\displaystyle\int_a^x\varphi(t)\,dt\right)\).
Soit \(q\) une fonction de classe \(\mathscr{C}^1\) de \(\mathbf{R}_+\) dans \(\mathbf{R}_+^*\), croissante, et \(f\) une solution de l’équation \(f''+qf=0\). Montrer que \(f\) est bornée.
[concours/ex4064] polytechnique P 1990 Conditions nécessaires et suffisantes sur les fonctions \(p\) et \(q\), supposées continues sur \(\mathbf{R}\), pour que l’équation différentielle \[x''+p(t)x'+q(t)x=0\] admette deux solutions, \(x_1\) et \(x_2\), telles que :
[concours/ex4064]
\(\forall t\in\mathbf{R}^*\quad x_1(t)\neq0\) ;
\(\forall t\in\mathbf{R}\quad x_2(t)=tx_1(t)\).
[planches/ex6387] ens lyon PC 2021 Pour \(\varphi_1\) et \(\varphi_2\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\), on pose \(W=\left|\matrix{\varphi_1&\varphi'_1\cr\varphi_2&\varphi'_2}\right|\).
[planches/ex6387]
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\). Soient \(\varphi_1\) et \(\varphi_2\) deux solutions de l’équation différentielle \(y''+qy=0\). Que dire de la fonction \(W\) ?
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\). Soit \(\varphi_1\) une solution de \(y''+q_1y=0\) et \(\varphi_2\) une solution de \(y''+q_2y=0\). Calculer \(W'\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\). On suppose que \(q\) est minorée par un réel strictement positif \(\alpha\). Montrer que toute solution de l’équation différentielle \(y''+qy=0\) s’annule une infinité de fois.
[concours/ex2908] centrale M 1994 Soient \(I\) un intervalle réel, \(p\) et \(q\) des applications continues définies sur \(I\) et à valeurs réelles. Soit \((E)\) l’équation différentielle : \(y''+py'+qy=0\). Trouver une condition portant sur les fonctions \(p\) et \(q\) pour que \((E)\) admette sur \(I\) deux solutions \(u\) et \(v\) non nulles telles que pour tout \(x\), on ait : \(v(x)=xu(x)\).
[concours/ex2908]
Application : résoudre, sur \(\left]0,+\infty\right[\), puis sur \(\left[0,+\infty\right[\), l’équation : \[x^2y''+x(1-2x)y'+\left(x^2-x-{1\over4}\right)y=x^{5/2}.\]
[concours/ex6044] centrale MP 2007 Soient \(m\in\mathbf{R}_+^*\) et \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R})\) telle que : \(\forall t\in\mathbf{R}_+\), \(q(t)\geqslant m\). On note \((E)\) l’équation différentielle \(y''+qy=0\). Soit \(f\) une solution non nulle de \((E)\).
[concours/ex6044]
Montrer qu’il existe \(p\), \(g:\mathbf{R}_+\rightarrow\mathbf{R}\) de classe \(C^1\) avec \(p>0\) telles que \(f=p\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits g\) et \(f'=p\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits g\).
Exprimer \(g'\) en fonction de \(g\) et \(q\).
En déduire que \(g\) est un \(C^1\)-difféomorphisme de \(\mathbf{R}_+\) sur \(g(\mathbf{R}_+)\).
Montrer que \(f\) s’annule une infinité de fois.
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez un énoncé, voire ne rien afficher