[planches/ex3378] polytechnique, espci PC 2018 Soient \(a\) et \(b\) dans \(\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\). Montrer qu’il existe deux solutions \(f\), \(g\) de \(E\) vérifiant \(fg=1\) si et seulement si \(b\) est de classe \(\mathscr{C}^1\), \(b\leqslant 0\) et \(b'=-2ab\).
[planches/ex3378]
[concours/ex2124] ccp, tpe, int, ivp MP 1999 Soient \(f\) et \(g\) solutions réelles non nulles de \(y''+a(x)y'+b(x)y=0\), \(a\) et \(b\) étant des fonctions réelles continues. Montrer qu’entre deux zéros de \(f\) il y a exactement un zéro de \(g\).
[concours/ex2124]
[planches/ex1038] ens MP 2014 Soient \(k\in\mathbf{N}\) et l’équation différentielle \((1-t^2)x''-2tx'+k(k+1)x=0\).
[planches/ex1038]
Montrer que cette équation admet une solution \(x_k\) non nulle, sur \(\mathbf{R}\).
Montrer que toute solution de classe \(\mathscr{C}^2\) sur \([-1,1]\) est proportionnelle à \(x_k\).
[oraux/ex4921] ens paris MP 2012 Soit \(f \in{\cal C}^0(\mathbf{R}^+ ,\mathbf{R})\) telle que \(1-f\) soit intégrable. Montrer que pour tout \((\alpha_1,\alpha_2)\in \mathbf{C}^2\), il existe une solution \(x\) de l’équation différentielle \(x''+f(t)\,x=0\) telle que la fonction \(t \mapsto x(t)-\alpha_1 e^{it}-\alpha_2 e^{-it}\) ait une limite nulle en \(+\infty\).
[oraux/ex4921]
[oraux/ex3149] polytechnique, espci PC 2011 Soient \(I\) un intervalle ouvert de \(\mathbf{R}\), \(a\) et \(b\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\).
[oraux/ex3149]
Soit \(f\) une solution non nulle de \((E)\). Montrer que les zéros de \((E)\) sont isolés.
Soient \(f\) et \(g\) deux solutions non nulles de \((E)\). On suppose que \(f\) et \(g\) ont un zéro commun. Montrer que \(f\) et \(g\) sont proportionnelles.
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Montrer qu’entre deux zéros consécutifs de \(f\) il y a exactement un zéro de \(g\).
[planches/ex4013] centrale PC 2018 (avec Python)
[planches/ex4013]
Python
Soit \((E)\) : \(x''(t)+p(t)x'(t)+q(t)x(t)=0\).
On prend \(p(t)=\displaystyle{t\over1+t^2}\) et \(q(t)=\displaystyle{-1\over1+t^2}\). Ainsi \((E)\) devient \((1+t^2)x''+tx'-x=0\).
Représenter sur \([0,5]\) les solutions \((f,g)\) de \((E)\) vérifiant \((f(0),f'(0))=(1,0)\) et \((g(0),g'(0))=(0,1)\).
En déduire une solution évidente.
Montrer que \(g\) est développable en série entière au voisinage de 0.
On a \(g(t)=\displaystyle\sum\limits_{n=0}^{+\infty}c_nt^{2n}\). Trouver une relation de récurrence entre les \(c_n\) et en déduire \(g\).
Montrer que \((E)\) possède deux solutions inverses l’une de l’autre.
On suppose maintenant que \((E)\) admet deux solutions \(u\) et \(v\) avec \(v=1/u\). Exprimer \(p\) et \(q\) en fonction de \(u\). En déduire une relation entre \(p\) et \(q\).
[planches/ex1060] centrale MP 2015 On considère l’équation différentielle \[(E_1)\ :\quad x''+p(t)x'+q(t)x=0.\]
[planches/ex1060]
Soient \(u_1\) et \(u_2\) deux solutions de \((E_1)\) telles que \(u_1u_2=1\). On pose \(z_i=\displaystyle{u'_i\over u_i}\). Montrer que les \(z_i\) sont deux solutions opposées d’une équation différentielle non linéaire \((E_2)\).
En déduire une condition néessaire et suffisante sur \(p\) et \(q\) pour que \((E_1)\) admette deux solutions \(u_1\) et \(u_2\) telles que \(u_1u_2=1\).
Résoudre \((1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(4t))x''-2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(4t)x'-8x=0\).
[oraux/ex2884] centrale MP 2005
[oraux/ex2884]
Soient \(a\), \(b\), \(c\) trois fonctions de classe \(\mathscr{C}^\infty\) sur un intervalle \(I\) de \(\mathbf{R}\). À quelle condition l’équation \(ay''+by'+cy=0\) admet-elle deux solutions \(y_1\) et \(y_1\) vérifiant \(y_1y_2=1\) ?
Soit \((E)\) l’équation différentielle : \((x-1)y''(x)+xy'(x)-4y(x)=0\). Montrer que la condition précédente est réalisée. Étudier les solutions de \((E)\) sur \(\mathbf{R}\).
[planches/ex1022] centrale MP 2014 Soient \(I\) un intervalle de \(\mathbf{R}\) non vide et non réduit à un point, \(p\), \(q:I\rightarrow\mathbf{R}\) continues et \((E)\) : \(y''+py'+qy=0\). On suppose \(q\neq0\). On étudie l’existence de deux solutions, notées \(y_1\) et \(y_2\) de \((E)\), inverses l’une de l’autre, c’est-à-dire que \(y_1y_2=1\).
[planches/ex1022]
Si \(p\) et \(q\) sont constantes, donner une condition suffisante d’existence.
On considère \((E_1)\) : \(y''+\displaystyle{y'\over x}-{y\over4x^2}=0\) sur \(\left]1,+\infty\right[\) et \((E_2)\) : \(y''-\displaystyle{y'\over x\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x}-y{(\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x)^2\over4}=0\) sur \(\mathbf{R}_+^*\). Trouver pour \((E_1)\) puis pour \((E_2)\) un couple de solutions inverses l’une de l’autre.
On revient à l’équation générale \((E)\) et on suppose qu’elle admet un couple de solutions inverses l’une de l’autre \((y_1,y_2)\). On note \(W\) le wronskien de \((y_1,y_2)\).
Montrer que \(y_1\) et \(y_2\) sont linéairement indépendantes. Qu’en déduit-on pour \(W\) ?
Exprimer \(W\) en fonction de \(y_1\).
Montrer que \(W'+pW=0\).
Donner une condition nécessaire et suffisante sur \((p,q)\) pour que \((E)\) possède un couple de solutions inverses l’une de l’autre.
[planches/ex1053] polytechnique, espci PC 2015 Soient \(a\) et \(b\) dans \(\mathscr{C}^1(\mathbf{R},\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\). Donner une condition nécessaire et suffisante sur \(a\) et \(b\) pour qu’il existe \(f\) et \(g\) solutions de \((E)\) telles que \(fg=1\).
[planches/ex1053]
Vous pouvez choisir d'afficher tous les résultats d'une requête de façon individuelle, ou en les regroupant par familles d'exercices