[examen/ex0104] mines PSI 2023 Soient \(u\in\mathscr{C}^0(\mathbf{R}^+,\mathbf{R})\) intégrable sur \(\mathbf{R}^+\) et \(f\in\mathscr{C}^2(\mathbf{R}^+,\mathbf{R})\) telle que \(f''+(1+u)f=0\). Soit \(g:x\in\mathbf{R}^+\mapsto f(x)+\displaystyle\int_0^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)\,f(t)\,u(t)\,\mathrm{d}t\).
[examen/ex0104]
Trouver une équation différentielle linéaire vérifiée par \(g\).
En déduire l’existence de \(c\) positif tel que : \(\forall x\in\mathbf{R}^+\), \(|f(x)|\leqslant c+\displaystyle\int_0^x|f(t)\,u(t)|\,\mathrm{d}t\).
Montrer que \(f\) est bornée.
[oraux/ex3041] mines PC 2009 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((E)\) : \(y''+qy=0\). Soient \(u\) et \(v\) deux solutions linéairement indépendantes de \((E)\).
[oraux/ex3041]
Montrer que les zéros de \(v\) sont isolés.
Montrer qu’entre deux zéros consécutifs de \(v\), \(u\) s’annule exactement une fois.
[oraux/ex2850] ens cachan MP 2005 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) une fonction continue, positive, de période \(\pi\) et non nulle. Soit \(\mathscr{E}\) l’ensemble des solutions de : \(y''+qy=0\).
[oraux/ex2850]
Soit \(\varphi\in\mathscr{E}\). Montrer que l’ensemble des zéros de \(\varphi\) n’est ni majoré ni minoré.
On suppose \(\varphi\) non nulle ; Soit \(\psi\in\mathscr{E}\) non proportionnelle à \(\varphi\). Montrer que les zéros de \(\psi\) séparent ceux de \(\varphi\).
[planches/ex1057] mines MP 2015 Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\), \(f\) et \(g\) dans \(\mathscr{C}^0([a,b],\mathbf{R})\) avec \(f\leqslant 0\).
[planches/ex1057]
Soit \(z\in\mathscr{C}^2([a,b],\mathbf{R})\) telle que \(z''+fz=0\). Étudier la convexité de \(z^2\).
Montrer que le problème \(y''+fy=g\), \(y(a)=y(b)=0\) possède une et une seule solution.
[planches/ex1026] centrale PSI 2014 Soient \(a\), \(b\in\mathbf{R}\) tels que \(a<b\) et \(f\), \(g\in\mathscr{C}^0([a,b],\mathbf{R})\). On suppose \(f>0\). On considère l’équation différentielle \((E)\) : \(y''-fy=g\).
[planches/ex1026]
Montrer que l’équation homogène associée à \((E)\) possède deux solutions \(u\) et \(v\) caractérisées par : \(u(a)=0\), \(u'(a)=1\) et \(v(b)=0\), \(v'(b)=1\).
Montrer que \((E)\) possède au plus une solution s’annulant en \(a\) et en \(b\).
Indication : Considérer \(y_1\) et \(y_2\) deux telles solutions et \(h=y_2-y_1\). Remarquer que \(h^2\) est convexe.
Montrer que \((E)\) possède une solution s’annulant en \(a\) et \(b\) et en donner une expression en fonction de \(u\), \(v\), \(f\) et \(g\).
[oraux/ex3009] ens PC 2009 Soient \((p,q)\in\mathscr{C}^0([0,1],\mathbf{R})\) avec \(q\leqslant 0\) et \((E)\) : \(y''+py'+qy=0\). Soit \((a,b)\in\mathbf{R}^2\). Montrer qu’il existe une unique solution \(f\) de \((E)\) telle que \(f(0)=a\) et \(f(1)=b\).
[oraux/ex3009]
[concours/ex0810] mines MP 1997 Soit l’équation différentielle \((E)\) : \(y''-f(x)y=g(x)\) avec \(f\), \(g\in\mathscr{C}([a,b],\mathbf{R})\) et \(f\geqslant 0\).
[concours/ex0810]
Montrer qu’il existe au plus une solution de \((E)\) s’annulant en \(a\) et en \(b\).
Montrer qu’il existe deux solutions \(u\) et \(v\) de \(y''-f(x)y=0\) vérifiant les conditions \(u(a)=0\), \(u'(a)=1\) et \(v(b)=0\), \(v'(b)=1\).
Montrer qu’il existe une unique solution de \((E)\) s’annulant en \(a\) et en \(b\) et l’exprimer à l’aide de \(u\) et \(v\).
[planches/ex4013] centrale PC 2018 (avec Python)
[planches/ex4013]
Python
Soit \((E)\) : \(x''(t)+p(t)x'(t)+q(t)x(t)=0\).
On prend \(p(t)=\displaystyle{t\over1+t^2}\) et \(q(t)=\displaystyle{-1\over1+t^2}\). Ainsi \((E)\) devient \((1+t^2)x''+tx'-x=0\).
Représenter sur \([0,5]\) les solutions \((f,g)\) de \((E)\) vérifiant \((f(0),f'(0))=(1,0)\) et \((g(0),g'(0))=(0,1)\).
En déduire une solution évidente.
Montrer que \(g\) est développable en série entière au voisinage de 0.
On a \(g(t)=\displaystyle\sum\limits_{n=0}^{+\infty}c_nt^{2n}\). Trouver une relation de récurrence entre les \(c_n\) et en déduire \(g\).
Montrer que \((E)\) possède deux solutions inverses l’une de l’autre.
On suppose maintenant que \((E)\) admet deux solutions \(u\) et \(v\) avec \(v=1/u\). Exprimer \(p\) et \(q\) en fonction de \(u\). En déduire une relation entre \(p\) et \(q\).
[oraux/ex3149] polytechnique, espci PC 2011 Soient \(I\) un intervalle ouvert de \(\mathbf{R}\), \(a\) et \(b\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\).
[oraux/ex3149]
Soit \(f\) une solution non nulle de \((E)\). Montrer que les zéros de \((E)\) sont isolés.
Soient \(f\) et \(g\) deux solutions non nulles de \((E)\). On suppose que \(f\) et \(g\) ont un zéro commun. Montrer que \(f\) et \(g\) sont proportionnelles.
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Montrer qu’entre deux zéros consécutifs de \(f\) il y a exactement un zéro de \(g\).
[planches/ex1053] polytechnique, espci PC 2015 Soient \(a\) et \(b\) dans \(\mathscr{C}^1(\mathbf{R},\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\). Donner une condition nécessaire et suffisante sur \(a\) et \(b\) pour qu’il existe \(f\) et \(g\) solutions de \((E)\) telles que \(fg=1\).
[planches/ex1053]
Sur les pages de résultats, vous pouvez modifier l'ordre des énoncés