[concours/ex3081] polytechnique M 1993 Soit \(J\) l’intervalle \(\left]a,+\infty\right[\), \(q\) une application continue sur \(J\) à valeurs réelles. On suppose que : \[\int_a^{+\infty}\left|q(t)\right|\,dt\] converge. Montrer qu’il existe une solution, à valeurs complexes, de l’équation différentielle : \[x''+(1+q)x=0,\] telle que \(x(t)-e^{it}\) tende vers \(0\) lorsque \(t\) tend vers \(+\infty\).
[concours/ex3081]
[equadiff/ex0094] Soient deux fonctions \(q_1\) et \(q_2\) définies et continues sur \(I\) et telles que \(q_1<q_2\). On considère les équations \[(E_1)\quad x''+q_1(t)x_1=0\qquad(E_2)\quad x''+q_2(t)x_1=0\,.\] Soit \(u_1\) une solution non nulle de \((E_1)\). On suppose que \(u_1\) s’annule en \(\alpha\) et en \(\beta\), avec \(\alpha<\beta\).
[equadiff/ex0094]
Montrer que toute solution \(u_2\) de \((E_2)\) s’annule sur \(\left]\alpha,\beta\right[\).
[planches/ex3691] mines PSI 2018 On considère l’équation différentielle \((E):y''+a(t)y'+b(t)y=0\) où \(a\) et \(b\) désignent des fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\).
[planches/ex3691]
Calculer pour deux solutions \(f\), \(g\) de \((E)\) la quantité \(W=fg'-f'g\).
On suppose \(a\) impaire et \(b\) paire. Montrer que la fonction \(f\) solution de \((E)\) avec les conditions initiales \(f(0)=1\) et \(f'(0)=1\) est paire. Montrer de même que la fonction \(g\) solution de \((E)\) avec les conditions initiales \(g(0)=0\) et \(g'(0)=1\) est impaire. En déduire qu’il existe une base de l’espace des solutions de \((E)\) constituée d’une fonction paire et d’une fonction impaire.
On suppose qu’il existe une base de l’espace des solutions de \((E)\) constituée d’une fonction paire et d’une fonction impaire. Montrer que \(a\) est impaire et \(b\) paire.
[oraux/ex2840] centrale 2004 Soient \(r\) et \(q\) deux fonctions continues sur \(I=[a,b]\), telles que \(\forall x\in I\), \(r(x)\geqslant q(x)\). On considère les équations différentielles : \[\begin{array}{lcc}y''+qy=0&&(E_1)\\z''+rz=0&&(E_2)\end{array}\]
[oraux/ex2840]
Soient \(x_0\) et \(x_1\) deux zéros consécutifs de \(y\), solution non nulle de \((E_1)\). Peut-on avoir \(y'(x_0)=0\) ou \(y'(x_1)=0\) ? Que dire des signes de \(y'(x_0)\) et \(y'(x_1)\) ?
Soit \(z\) une solution de \((E_2)\). On note \(w(x)=y(x)z'(x)-y'(x)z(x)\). Calculer \(w'(x)\) et exprimer \(w(x_1)-w(x_0)\).
Montrer que pour tout \(z\) solution de \((E_2)\), \(z\) s’annule entre \(x_0\) et \(x_1\).
Montrer que toute solution de \((E_1)\) est proportionnelle à \(y\) ou alors qu’elle s’annule entre \(x_0\) et \(x_1\).
Application : Soit \(y\) une solution de l’équation \(y''+e^{x^2}y=0\). La fonction \(y\) s’annule-t-elle ?
[oraux/ex3049] centrale MP 2009 Soit \(I\) un intervalle ouvert et non vide de \(\mathbf{R}\).
[oraux/ex3049]
Soient \(A\) et \(B\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) : \(y''+Ay'+By=0\).
Soit \(f\) une solution non identiquement nulle de \((E)\) et \(S\) un segment de \(I\). Montrer que \(f\) s’annule un nombre fini de fois sur \(S\).
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Soit \((u,v)\in I^2\) tel que \(u<v\) et \(f(u)=f(v)=0\). Montrer que \(g\) possède un zéro sur \(\left]u,v\right[\).
Soient \(p\) et \(q\) dans \(\mathscr{C}^0(I,\mathbf{R})\) telles que : \(\forall x\in I\), \(p(x)<q(x)\). Soient \(f\), \(g\in\mathscr{C}^2(I,\mathbf{R})\) non identiquement nulles et telles que : \(f''+pf=0\) et \(g''+qg=0\). Soit \((u,v)\in I^2\) tel que \(u<v\) et \(f(u)=f(v)=0\). Montrer que \(g\) possède un zéro sur \(\left]u,v\right[\).
[oraux/ex3074] ens lyon MP 2010 Soient \(p\) et \(q\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(p\leqslant q\) et \(f\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) non identiquement nulle telle que \(f''+pf=0\).
[oraux/ex3074]
Montrer que les zéros de \(f\) sont isolés.
Soient \(x_1<x_2\) deux zéros consécutifs de \(f\) et \(g\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) telle que \(g''+qg=0\). Montrer que \(g\) s’annule sur \([x_1,x_2]\).
[planches/ex6507] polytechnique MP 2021
[planches/ex6507]
Soient \(q_1\), \(q_2\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R})\) telles que \(q_1\leqslant q_2\). Soient \(y_1\) (resp. \(y_2\)) une solution non nulle de \(y''+q_1y=0\) (resp. \(y''+q_2y=0\)). Soient \(u\), \(v\in\mathbf{R}_+\) tels que \(u<v\), \(y_1(u)=y_1(v)=0\). Montrer que \(y_2\) s’annule sur \([u,v]\).
Soit \(m\), \(M\in\mathbf{R}\) avec \(0<m\leqslant M\). Soit \(y\) une solution non nulle de \(y''+qy=0\) où \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R})\) vérifie \(m\leqslant q\leqslant M\). Montrer que l’on peut ranger les zéros de \(y\) en une suite croissante \((t_n)_{n\geqslant 0}\) avec, pour tout \(n\in\mathbf{N}\), \(t_{n+1}-t_n\in\left[-\displaystyle{\pi\over\sqrt M},{\pi\over\sqrt M}\right]\).
[examen/ex0104] mines PSI 2023 Soient \(u\in\mathscr{C}^0(\mathbf{R}^+,\mathbf{R})\) intégrable sur \(\mathbf{R}^+\) et \(f\in\mathscr{C}^2(\mathbf{R}^+,\mathbf{R})\) telle que \(f''+(1+u)f=0\). Soit \(g:x\in\mathbf{R}^+\mapsto f(x)+\displaystyle\int_0^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)\,f(t)\,u(t)\,\mathrm{d}t\).
[examen/ex0104]
Trouver une équation différentielle linéaire vérifiée par \(g\).
En déduire l’existence de \(c\) positif tel que : \(\forall x\in\mathbf{R}^+\), \(|f(x)|\leqslant c+\displaystyle\int_0^x|f(t)\,u(t)|\,\mathrm{d}t\).
Montrer que \(f\) est bornée.
[oraux/ex3119] centrale PC 2010 Soient \(I\) un intervalle ouvert non vide de \(\mathbf{R}\), \(a\in\mathscr{C}^0(I,\mathbf{R}_+)\) et \(b\in\mathscr{C}^0(I,\mathbf{R})\). Soient \((E_1)\) : \(y''-a(x)y=0\) et \((E_2)\) : \(y''-a(x)y=b(x)\).
[oraux/ex3119]
Soit \(y\) une solution de \((E_1)\). On suppose qu’il existe \((x_1,x_2)\in I^2\) avec \(x_1<x_2\) tel que \(y(x_1)=y(x_2)=0\). Calculer \(\displaystyle\int_{x_1}^{x_2}y(x)^2a(x)\,dx\). Que dire de \(y\) ?
Soient \((x_1,x_2)\in I^2\) avec \(x_1<x_2\).
Montrer qu’il existe une unique solution \(y_1\) de \((E_2)\) telle que \(y_1(x_1)=0\) et \(y_1'(x_1)=1\).
Montrer qu’il existe une unique solution \(y_2\) de \((E_2)\) telle que \(y_2(x_1)=y_2(x_2)=0\).
[oraux/ex2850] ens cachan MP 2005 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) une fonction continue, positive, de période \(\pi\) et non nulle. Soit \(\mathscr{E}\) l’ensemble des solutions de : \(y''+qy=0\).
[oraux/ex2850]
Soit \(\varphi\in\mathscr{E}\). Montrer que l’ensemble des zéros de \(\varphi\) n’est ni majoré ni minoré.
On suppose \(\varphi\) non nulle ; Soit \(\psi\in\mathscr{E}\) non proportionnelle à \(\varphi\). Montrer que les zéros de \(\psi\) séparent ceux de \(\varphi\).
Vous pouvez désactiver ou réduire la fréquence d'affichage de ces fenêtres d'astuces