[oraux/ex5642] centrale MP 2012 Soient \(q\in{\cal C}^0(\mathbf{R},\mathbf{R})\) paire et \(\pi\)-périodique, \((E)\) l’équation différentielle : \(y''+q\,y=0\).
[oraux/ex5642]
Montrer qu’il existe une unique solution \(y_1\) de \((E)\) telle que \(y_1(0)=1\) et \(y'_1(0)=0\) et une unique solution \(y_2\) de \((E)\) telle que \(y_2(0)=0\) et \(y'_2(0)=1\).
Montrer que \((y_1,y_2)\) est une base de l’espace vectoriel \(S\) des solutions de \((E)\).
Montrer que \(y_1\) est paire et \(y_2\) impaire.
Montrer que la fonction \(y_1\,y'_2-y'_1\,y_2\) est constante.
Pour \(y\in S\), on note \(f(y)\,:\;t\mapsto y(t+\pi)\).
Montrer que \(f\) est un endomorphisme de \(S\).
Déterminer la matrice \(A\) de \(f\) dans la base \((y_1,y_2)\).
Montrer que le polynôme caractéristique de \(A\) est de la forme \(X^2-2a\,X+1\), pour un certain réel \(a\).
On suppose \(a=1\). Montrer que \((E)\) admet une solution \(\pi\)-périodique non triviale.
On suppose \(a=-1\). Montrer que \((E)\) admet une solution \(2\pi\)-périodique non triviale.
On suppose \(|a|>1\). Montrer que \(f\) admet deux vecteurs propres linéairement indépendants. Montrer que ce sont des fonctions non bornées. En déduire les solutions bornées de \((E)\).
[planches/ex9044] ccinp PC 2022 Soit \(q\) une fonction continue et \(T\)-périodique de \(\mathbf{R}\) dans \(\mathbf{R}\). On considère l’équation différentielle \((E_q)\) : \(y''+qy=0\).
[planches/ex9044]
On suppose que \(q\) est la fonction constante égale à 1. Montrer que les solutions de \((E_1)\) sont toutes bornées.
On rappelle qu’une base de l’espace \(S_q\) des solutions de \((E_q)\) est \((y_1,y_2)\) où \(y_1\) et \(y_2\) sont les solutions de \((E_q)\) telles que \((y_1(0)=1,\ y_1'(0)=0)\) et \((y_2(0)=0,\ y_2'(0)=1)\). Soit \(F\) l’application qui à \(y\in S_q\) associe la fonction \(t\longmapsto y(t+T)\).
Montrer que \(F\) est un endomorphisme de \(S_q\) et que sa matrice dans la base \((y_1,y_2)\) est \(A=\pmatrix{y_1(T)&y_2(T)\cr y_1'(T)&y_2'(T)}\).
Montrer que la fonction \(W:t\longmapsto y_1(t)y_2'(t)-y_1'(t)y_2(t)\) est constante.
Montrer que \(\chi_A(X)=X^2-\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)X+1\).
On suppose que \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)|<2\). Montrer que \(\chi_A\) admet deux racines complexes conjuguées \(\lambda\) et \(\overline\lambda\). Montrer qu’il existe deux solutions \(z_1\) et \(z_2\) de \((E_q)\), à valeurs dans \(\mathbf{C}\), telles que \(F(z_1)=\lambda z_1\) et \(F(z_2)=\overline\lambda z_2\).
[oraux/ex3097] mines PC 2010 Soient \(a\), \(b\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((f,g)\) un système fondamental de solutions de l’équation différentielle \((E)\) : \(y''+ay'+by=0\). On suppose \(f\) paire et \(g\) impaire. Montrer que \(a\) est impaire et \(b\) est paire.
[oraux/ex3097]
[planches/ex1066] centrale PSI 2015 Soit \(a\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) telle que l’intégrale \(\displaystyle\int_0^{+\infty}|a(x)|\,dx\) existe.
[planches/ex1066]
A-t-on nécessairement \(a(x)\mathrel{\mathop{\longrightarrow}\limits_{x\rightarrow+\infty}}0\) ?
Soit \(f\) vérifiant sur \(\mathbf{R}_+\) : \(y''(x)+(1+a(x))y(x)=0\). Soit \[g:x\in\mathbf{R}_+\mapsto f(x)+\int_0^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)a(t)f(t)\,dt.\] Montrer que \(g\) est de classe \(\mathscr{C}^2\) sur \(\mathbf{R}_+\), puis que \(g''+g=0\).
Montrer qu’il existe \(c\in\mathbf{R}_+\) tel que : \(\forall x\in\mathbf{R}_+\), \(|f(x)|\leqslant c+\displaystyle\int_0^x|a(t)|\,|f(t)|\,dt\).
Montrer que toutes les solutions de \(y''+(1+a)y=0\) sont bornées.
[planches/ex1134] tpe PC 2016 Soient \(I\) un intervalle de \(\mathbf{R}\) centré en zéro, \(\varphi\in\mathscr{C}^\infty(I,\mathbf{R})\) une fonction paire et \((E)\) l’équation différentielle \(y''(x)+\varphi(x)y(x)=0\). Soit \(y\) une solution de \((E)\). Montrer que \(y\) est de classe \(\mathscr{C}^\infty\) et que la fonction \(x\mapsto y(-x)\) est également solution de \((E)\).
[planches/ex1134]
[concours/ex3236] mines M 1993 Soit \(u\) une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\) et \(f\) une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}_+\). On suppose qu’il existe une constante \(A\) telle que, pour tout \(x\) de \(\mathbf{R}_+\), \[u(x)\leqslant A+\int_0^xf(t)u(t)\,dt.\] Montrer que \[u(x)\leqslant A\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\int_0^xf(t)\,dt\right).\] Soit \((E)\) l’équation différentielle : \(y''+y(1+g(t))=0\), où \(g\) est une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\) telle que \(\displaystyle\int_0^{+\infty}\bigl|g(t)\bigr|\,dt\) converge. Montrer que toute solution de \(E\) est bornée.
[concours/ex3236]
[planches/ex0928] polytechnique MP 2013 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue et intégrable. Montrer que toute solution de l’équation différentielle \(y''+(1+q(t))y=0\) est bornée sur \(\mathbf{R}\).
[planches/ex0928]
[oraux/ex2840] centrale 2004 Soient \(r\) et \(q\) deux fonctions continues sur \(I=[a,b]\), telles que \(\forall x\in I\), \(r(x)\geqslant q(x)\). On considère les équations différentielles : \[\begin{array}{lcc}y''+qy=0&&(E_1)\\z''+rz=0&&(E_2)\end{array}\]
[oraux/ex2840]
Soient \(x_0\) et \(x_1\) deux zéros consécutifs de \(y\), solution non nulle de \((E_1)\). Peut-on avoir \(y'(x_0)=0\) ou \(y'(x_1)=0\) ? Que dire des signes de \(y'(x_0)\) et \(y'(x_1)\) ?
Soit \(z\) une solution de \((E_2)\). On note \(w(x)=y(x)z'(x)-y'(x)z(x)\). Calculer \(w'(x)\) et exprimer \(w(x_1)-w(x_0)\).
Montrer que pour tout \(z\) solution de \((E_2)\), \(z\) s’annule entre \(x_0\) et \(x_1\).
Montrer que toute solution de \((E_1)\) est proportionnelle à \(y\) ou alors qu’elle s’annule entre \(x_0\) et \(x_1\).
Application : Soit \(y\) une solution de l’équation \(y''+e^{x^2}y=0\). La fonction \(y\) s’annule-t-elle ?
[planches/ex1109] centrale MP 2016
[planches/ex1109]
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(q_2\geqslant q_1\), \(u\) (resp. \(v\)) une solution non identiquement nulle de \(y_1''+q_1y=0\) (resp. \(y''+q_2y=0\)), \(a\) et \(b\) deux zéros consécutifs de \(u\). Montrer que soit \(v/u\) est constante sur \(\left]a,b\right[\), soit \(v\) s’annule sur \(\left]a,b\right[\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}_-\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
Soient \(c\) et \(d\) deux éléments de \(\mathbf{R}_+^*\) tels que \(c<d\), \(q\) une fonction continue de \(\mathbf{R}\) dans \([c^2,d^2]\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
[oraux/ex3049] centrale MP 2009 Soit \(I\) un intervalle ouvert et non vide de \(\mathbf{R}\).
[oraux/ex3049]
Soient \(A\) et \(B\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) : \(y''+Ay'+By=0\).
Soit \(f\) une solution non identiquement nulle de \((E)\) et \(S\) un segment de \(I\). Montrer que \(f\) s’annule un nombre fini de fois sur \(S\).
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Soit \((u,v)\in I^2\) tel que \(u<v\) et \(f(u)=f(v)=0\). Montrer que \(g\) possède un zéro sur \(\left]u,v\right[\).
Soient \(p\) et \(q\) dans \(\mathscr{C}^0(I,\mathbf{R})\) telles que : \(\forall x\in I\), \(p(x)<q(x)\). Soient \(f\), \(g\in\mathscr{C}^2(I,\mathbf{R})\) non identiquement nulles et telles que : \(f''+pf=0\) et \(g''+qg=0\). Soit \((u,v)\in I^2\) tel que \(u<v\) et \(f(u)=f(v)=0\). Montrer que \(g\) possède un zéro sur \(\left]u,v\right[\).
Vous pouvez choisir la typographie des énoncés : HTML (MathJax, plus joli) ou sous forme d'image (GIF, plus rapide)