[planches/ex0966] centrale PSI 2013 (avec Maple)
[planches/ex0966]
Maple
Soient \(g:\left]0,+\infty\right[\rightarrow\mathbf{R}\) continue et \((E)\) l’équation différentielle : \(y''-2y'+y=g\).
Quelle est la structure de l’ensemble des solutions de \((E)\) ?
Déterminer cet ensemble avec \(g:x\mapsto1/x^2\). Les solutions obtenues sont-elles prolongeables par continuité à droite en 0 ?
Déterminer l’ensemble des solutions de \((E)\) pour \(g:x\mapsto-\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x\). Les solutions obtenues sont-elles prolongeables par continuité à droite en 0 ? Les solutions obtenues sont-elles prolongeables de classe \(\mathscr{C}^1\) en 0 ?
Soit \(S\) l’ensemble des solutions de classe \(\mathscr{C}^0\) de \((E)\) et \(S_1\) le sous-ensemble de \(S\) formé des solutions de classe \(\mathscr{C}^1\). Trouver une condition nécessaire et suffisante sur \(g\) pour que \(S=S_1\).
Dans cette question, \(g=g_\alpha:x\mapsto x^\alpha\). Déterminer les \(\alpha\) pour lesquels \(S_1=S\).
Montrer qu’il existe une unique solution de \((E)\) telle que \(y(0)=y'(0)=0\).
[planches/ex2138] mines MP 2017 Soient \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\). À quelle condition l’équation différentielle \(y''(t)+a(t)y'(t)+b(t)y(t)=0\) admet-elle une base formée d’une fonction paire et d’une fonction impaire ?
[planches/ex2138]
[oraux/ex3097] mines PC 2010 Soient \(a\), \(b\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((f,g)\) un système fondamental de solutions de l’équation différentielle \((E)\) : \(y''+ay'+by=0\). On suppose \(f\) paire et \(g\) impaire. Montrer que \(a\) est impaire et \(b\) est paire.
[oraux/ex3097]
[concours/ex5791] mines PSI 2007 Soit \((E)\) : \(y''=a(x)y'+b(x)y\) où \(a\), \(b\) sont continues sur \(\mathbf{R}\). Montrer qu’il existe un système fondamental de solutions de \((E)\) formé d’une fonction paire et d’une fonction impaire si et seulement si \(a\) est impaire et \(b\) paire.
[concours/ex5791]
[planches/ex1134] tpe PC 2016 Soient \(I\) un intervalle de \(\mathbf{R}\) centré en zéro, \(\varphi\in\mathscr{C}^\infty(I,\mathbf{R})\) une fonction paire et \((E)\) l’équation différentielle \(y''(x)+\varphi(x)y(x)=0\). Soit \(y\) une solution de \((E)\). Montrer que \(y\) est de classe \(\mathscr{C}^\infty\) et que la fonction \(x\mapsto y(-x)\) est également solution de \((E)\).
[planches/ex1134]
[concours/ex3236] mines M 1993 Soit \(u\) une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\) et \(f\) une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}_+\). On suppose qu’il existe une constante \(A\) telle que, pour tout \(x\) de \(\mathbf{R}_+\), \[u(x)\leqslant A+\int_0^xf(t)u(t)\,dt.\] Montrer que \[u(x)\leqslant A\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\int_0^xf(t)\,dt\right).\] Soit \((E)\) l’équation différentielle : \(y''+y(1+g(t))=0\), où \(g\) est une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\) telle que \(\displaystyle\int_0^{+\infty}\bigl|g(t)\bigr|\,dt\) converge. Montrer que toute solution de \(E\) est bornée.
[concours/ex3236]
[planches/ex1066] centrale PSI 2015 Soit \(a\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) telle que l’intégrale \(\displaystyle\int_0^{+\infty}|a(x)|\,dx\) existe.
[planches/ex1066]
A-t-on nécessairement \(a(x)\mathrel{\mathop{\longrightarrow}\limits_{x\rightarrow+\infty}}0\) ?
Soit \(f\) vérifiant sur \(\mathbf{R}_+\) : \(y''(x)+(1+a(x))y(x)=0\). Soit \[g:x\in\mathbf{R}_+\mapsto f(x)+\int_0^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)a(t)f(t)\,dt.\] Montrer que \(g\) est de classe \(\mathscr{C}^2\) sur \(\mathbf{R}_+\), puis que \(g''+g=0\).
Montrer qu’il existe \(c\in\mathbf{R}_+\) tel que : \(\forall x\in\mathbf{R}_+\), \(|f(x)|\leqslant c+\displaystyle\int_0^x|a(t)|\,|f(t)|\,dt\).
Montrer que toutes les solutions de \(y''+(1+a)y=0\) sont bornées.
[planches/ex0928] polytechnique MP 2013 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue et intégrable. Montrer que toute solution de l’équation différentielle \(y''+(1+q(t))y=0\) est bornée sur \(\mathbf{R}\).
[planches/ex0928]
[concours/ex3081] polytechnique M 1993 Soit \(J\) l’intervalle \(\left]a,+\infty\right[\), \(q\) une application continue sur \(J\) à valeurs réelles. On suppose que : \[\int_a^{+\infty}\left|q(t)\right|\,dt\] converge. Montrer qu’il existe une solution, à valeurs complexes, de l’équation différentielle : \[x''+(1+q)x=0,\] telle que \(x(t)-e^{it}\) tende vers \(0\) lorsque \(t\) tend vers \(+\infty\).
[concours/ex3081]
[planches/ex1109] centrale MP 2016
[planches/ex1109]
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(q_2\geqslant q_1\), \(u\) (resp. \(v\)) une solution non identiquement nulle de \(y_1''+q_1y=0\) (resp. \(y''+q_2y=0\)), \(a\) et \(b\) deux zéros consécutifs de \(u\). Montrer que soit \(v/u\) est constante sur \(\left]a,b\right[\), soit \(v\) s’annule sur \(\left]a,b\right[\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}_-\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
Soient \(c\) et \(d\) deux éléments de \(\mathbf{R}_+^*\) tels que \(c<d\), \(q\) une fonction continue de \(\mathbf{R}\) dans \([c^2,d^2]\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
Vous pouvez paramétrer titre, entête et pied de page, fonte, ordre des exercices lors de la production des PDF