[oraux/ex3002] ens paris MP 2009 Soit \(E\) l’ensemble des fonctions complexes de classe \(C^\infty\) sur \(\mathbf{R}^2\), \(2\pi\)-périodiques par rapport à la première variable. On se donne une fonction complexe \(f_0\) de classe \(C^\infty\) sur \(\mathbf{R}\) et \(2\pi\)-périodique.
[oraux/ex3002]
Trouver \(f\in E\) telle que : \(\displaystyle{\partial f\over\partial t}(x,t)=-i\displaystyle{\partial^2f\over\partial x^2}(x,t)\) et \(\forall x\in\mathbf{R}\), \(f(x,0)=f_0(x)\).
Expliciter une constante \(C\) telle que : \[\int_0^{2\pi}\!\!\int_0^{2\pi}|f(x,t)|^4\,dx\,dt\leqslant C\left(\int_0^{2\pi}|f_0(x)|^2\,dx\right)^{\!2}.\]
[concours/ex5308] ens paris MP 2007
[concours/ex5308]
Soit \(x\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R})\) convexe, minorée et décroissante. Étudier la limite de \(t\mapsto tx'(t)\) lorsque \(t\rightarrow+\infty\).
Soient \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R}_+)\) et \(x\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R}_+^*)\) décroissante telles que \(x''=qx\). Montrer : \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{+\infty}x=0\Leftrightarrow\displaystyle\int_0^{+\infty}tq(t)\,dt=+\infty\).
[examen/ex2791] ens paris MP 2025 Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\), \(\psi\in\mathscr{C}^2([a,b],\mathbf{R}^{+*})\) croissante. Soit \(y\in\mathscr{C}^2([a,b], \mathbf{R})\) non nulle et vérifiant \(y''+\psi(x)y=0\). Montrer que les points où \(|y|\) admet un extremum local forment une suite finie \((a_1,\ldots,a_n)\) (éventuellement vide) et que la suite des valeurs \((|y(a_1)|,\ldots,|y(a_n)|)\) est décroissante.
[examen/ex2791]
[oraux/ex4963] ens PC 2012 Soient \((E)\) : \(y''+(1+e^{-t}) y=0\) et \((F)\) : \(y''+y=0\). Soient \(f\) une solution non nulle de \((E)\) et \(g\) une solution non nulle de \((F)\).
[oraux/ex4963]
Montrer qu’entre deux zéros de \(g\) il y a au moins un zéro de \(f\).
Montrer que \(f\) possède une infinité de zéros sur \(\mathbf{R}^+\). On note \((x_n)_{n\geqslant 0}\) la suite ordonnée des zéros de \(f\) sur \(\mathbf{R}^+\).
Montrer que \(x_{n+1}-x_n\rightarrow \pi\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow +\infty\).
[planches/ex0996] polytechnique MP 2014 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction continue telle que \(t\mapsto tq(t)\) soit intégrable sur \(\mathbf{R}_+\). Soit \(y:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction deux fois dérivable telle que \(y''+qy=0\). Montrer successivement :
[planches/ex0996]
que \(t\mapsto\displaystyle{y(t)\over t}\) est bornée au voisinage de \(+\infty\) ;
que \(y'\) a une limite finie en \(+\infty\) ;
que \(t\mapsto\displaystyle{y(t)\over t}\) a une limite finie en \(+\infty\).
Sur les pages de résultats, vous pouvez déterminer le nombre d'énoncés affichés