[planches/ex9268] ens saclay, ens rennes MP 2023 On considère l’équation différentielle \((D_{\lambda})\) : \(y'' + (\lambda-r)y =0\) avec \(\lambda \in \mathbb{R}\), \(r \in\mathscr{C}^{\infty}(I, \mathbb{R})\), où \(I\) est un intervalle contenant \([0, 1]\).
[planches/ex9268]
On considère \(E_{\lambda}\) l’espaces des solutions \(y\) de \((D_{\lambda})\) telles que \(y(0) = 0\), \(y(1) = 0\).
Quelles sont les dimensions possibles de \(E_{\lambda}\) ?
Caractériser le cas \(\mathop{\mathchoice{\hbox{dim}}{\hbox{dim}}{\mathrm{dim}}{\mathrm{dim}}}\nolimits(E_{\lambda}) = 1\). (On souhaite une condition portant sur \(y_{\lambda}\), solution du problème de Cauchy \((D_{\lambda})\), \(y_{\lambda}(0) = 0\), \(y_{\lambda}'(0) = 1\).)
Montrer que, à \(r\) fixé, les \(E_{\lambda}\) sont orthogonaux pour le produit scalaire \(\langle f, g \rangle = \displaystyle\int_{0}^{1} fg\).
On note \(N_\lambda\) le nombre de zéros de \(y_{\lambda}\) sur \([0, 1]\). Pourquoi est-il fini ?
Calculer \(N_{\lambda}\) dans le cas \(r = 0\), \(\lambda > 0\).
Dans le cas général, étudier le comportement de \(N_{\lambda}\).
[oraux/ex4931] ens paris, ens lyon, ens cachan MP 2012 Soit \(a>4\). On note \(E\) l’ensemble des \(f\in{\cal C}^0([0,1],\mathbf{R})\) de classe \({\cal C}^1\) sur \(]0,1]\), telles que \(f'^2\) soit intégrable sur \(]0,1]\) et vérifiant en outre \(f(0)=0\) et \(f(1)=1\) ; pour \(f\in E\), on pose \(\phi(f)=\displaystyle\int_0^1 \left(af'^2(t)-\frac{f(t)^2}{t^2}\right)\,dt\).
[oraux/ex4931]
On suppose que \(\phi\) réalise son minimum sur \(E\) en \(f\). Donner une équation différentielle qu’il est plausible que \(f\) vérifie, et en déduire une valeur plausible de \(f\).
Pour \(h\in E\), on pose \(g(t)=\displaystyle\frac{h(t)}{f(t)}\). Exprimer \(\phi(h)\) en fonction de \(g\), et en déduire que \(\phi\) réalise son minimum sur \(E\). Préciser en quels points.
[planches/ex9503] polytechnique MP 2023 Soient \(q_1\), \(q_2\) deux fonctions continues de \(\mathbf{R}^+\) dans \(\mathbf{R}\) telles que \(q_1\leqslant q_2\). On considère l’équation différentielle \((E_i)\) : \(y''+q_i(t)\, y=0\) pour \(i\in\{1,2\}\).
[planches/ex9503]
Soient \(y_1\), \(y_2\) des solutions respectives de \((E_1)\) et \((E_2)\) sur \(I\). Soient \(\alpha<\beta\) deux zéros de \(y_1\). Montrer que \(y_2\) s’annule dans \([\alpha,\beta]\).
Soient \(q:\mathbf{R}^+\rightarrow\mathbf{R}\) continue, \(m\), \(M\) deux réels strictement positifs tels que \(m\leqslant q\leqslant M\). Soient \(\alpha<\beta\) deux zéros consécutifs d’une solution non nulle \(x\) de \(y''+q(t)\,y=0\).
Montrer que les zéros de \(x\) forment une suite strictement croissante \((t_n)_{n\in\mathbf{N}}\).
Montrer que \(\displaystyle\frac{\pi}{\sqrt{M}}\leqslant t_{n+1}-t_n\leqslant\frac{\pi}{\sqrt{m}}\) pour tout \(n\in\mathbf{N}\).
[planches/ex6154] ens lyon MP 2021 Soit \(k\in\mathbf{R}\). Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) vérifiant \(y''=(x^3+kx)y\), \(y(0)=1\) et \(y'(0)=0\). Montrer que l’ensemble des zéros de \(y\) est majoré et non minoré.
[planches/ex6154]
[planches/ex9340] ens PSI 2023 Soient \(a>0\) et \(q \in\mathscr{C}^2(\left[a,+\infty\right[,\mathbf{R}^{+*})\) telle que \(\displaystyle\int_a^{+\infty} \sqrt {q(t)}\,{\rm d}t = +\infty\).
[planches/ex9340]
Soit \((E)\) l’équation différentielle \(y''+qy=0\)
Soient \(y_1\) et \(y_2\) deux fonctions de classe \(\mathscr{C}^1\) qui n’ont pas de zéros en commun. On pose \(\Phi = y_1 + iy_2\) et \(\Phi (a) = r_0e^{i\theta_0}\).
Montrer que \(\forall x \geqslant a\), \(\Phi (x) = e^{\Psi(x)}\) où \(\Psi(x)=\displaystyle\int_a^x\frac{\Phi'(t)}{\Phi(t)} \,{\rm d}t + \mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits (r_0) + i\theta_0\).
Montrer que l’on peut écrire \(y_1(x) =r(x)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\theta(x))\) et \(y_2(x) =r(x) \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta(x))\) où \(r(x) = \sqrt{y_1^2(x) + y_2^2(x)}\) et \(\theta (x) = \theta_0 +\displaystyle\int_a^x \displaystyle\frac{y_1y'_2-y_2y'_1}{y_1^2+ y_2^2}\).
On pose \(x \mapsto f(x) =\displaystyle\int_a^{x} \sqrt {q(t)}\,{\rm d}t\).
Montrer que \(f\) réalise une bijection de \(\left[a,+\infty\right[\) sur \(\mathbf{R}^+\).
Soit \(y\) une solution de \((E)\), non identiquement nulle. On pose \(Y = y\mathbin{\circ} f^{-1}\). Montrer que \(Y'' +vY' +Y =0\) où \(v~: t \mapsto\displaystyle\frac{q'(f^{-1}(t))}{2 (q(f^{-1}(t)))^{3/2}}\).
Montrer que \(Y\) et \(Y'\) n’ont pas de zéro en commun et que l’on peut écrire \(Y = r \mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits (\theta)\) et \(Y'= r \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta)\) où \(r\), \(\theta\) sont des fonctions de classe \(\mathscr{C}^1\).
Montrer que \((r^2)' = -2v r^2 \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2(\theta)\). En déduire que \(y\) et \(y'\) sont bornées.
[planches/ex1597] ens PSI 2017 Si \(x\) est un nombre réel, on note \(\{x\}=x-\lfloor x\rfloor\) la partie fractionnaire de \(x\). Soient \(\theta\in\mathbf{R}\setminus\mathbf{Q}\) et \(f:\mathbf{N}\rightarrow\left[0,1\right[\), \(n\mapsto\{n\theta\}\).
[planches/ex1597]
Montrer que \(f\) est injective.
Montrer que : \(\forall\varepsilon>0\), \(\exists(m,n)\in\mathbf{N}^2\), \(m\neq n\) et \(0<f(m)-f(n)<\varepsilon\).
En déduire que \(\{x\in\mathbf{R},\ \exists(a,b)\in\mathbf{Z}^2,\ x=a+b\theta\}\) est dense dans \(\mathbf{R}\).
On considère l’équation différentielle \((E)\) : \(y''+2y'+2y=f\) où \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) est non constante. On suppose que \((E)\) possède deux solutions périodiques \(y_1\) et \(y_2\) de périodes respectives \(T_1\) et \(T_2\). On se propose de montrer que \(y_1=y_2\).
Montrer que \(T_1/T_2\) est un nombre rationnel.
Montrer que la fonction \(y_2-y_1\) est bornée.
Montrer que \(y_2=y_1\).
[planches/ex7887] polytechnique, espci PC 2022 Déterminer les réels \(\lambda\) pour lesquels il existe \(f:\mathbf{R}\longrightarrow\mathbf{R}\) deux fois dérivable telle que \(\forall x\in\mathbf{R}\), \(f''(x)+(\lambda-x^2)f(x)=0\), \(f(0)=0\), et \(f\) tende vers 0 en \(+\infty\).
[planches/ex7887]
Indication : Considérer \(g:x\longmapsto f(x)e^{x^2/2}\).
[oraux/ex2894] centrale MP 2005 Soit \(q\) une fonction continue et positive définie sur \(\mathbf{R}\). On note \((E)\) l’équation différentielle : \(y''-qy=0\).
[oraux/ex2894]
Montrer qu’une solution non nulle de \((E)\) ne s’annule qu’au plus une fois.
Désormais \(q(t)=e^t\). Montrer que les solutions de \((E)\) sont développables en série entière.
Donner l’allure des solutions \(f\) et \(g\) de \(y''-e^ty=0\) vérifiant les conditions initiales \(f(0)=1\), \(f'(0)=0\), \(g(0)=0\) et \(g'(0)=1\).
[planches/ex1005] polytechnique, espci PC 2014 Soit \(f\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\), \(g\in\mathscr{C}^1(\mathbf{R},\mathbf{R}_+)\) telles que : \(\forall x\in\mathbf{R}\), \(f''(x)+f(x)=-xg(x)f'(x)\). Montrer que \(f\) est bornée.
[planches/ex1005]
Vous pouvez choisir l'ordre d'affichage initial des résultats d'une requête