[planches/ex9503] polytechnique MP 2023 Soient \(q_1\), \(q_2\) deux fonctions continues de \(\mathbf{R}^+\) dans \(\mathbf{R}\) telles que \(q_1\leqslant q_2\). On considère l’équation différentielle \((E_i)\) : \(y''+q_i(t)\, y=0\) pour \(i\in\{1,2\}\).
[planches/ex9503]
Soient \(y_1\), \(y_2\) des solutions respectives de \((E_1)\) et \((E_2)\) sur \(I\). Soient \(\alpha<\beta\) deux zéros de \(y_1\). Montrer que \(y_2\) s’annule dans \([\alpha,\beta]\).
Soient \(q:\mathbf{R}^+\rightarrow\mathbf{R}\) continue, \(m\), \(M\) deux réels strictement positifs tels que \(m\leqslant q\leqslant M\). Soient \(\alpha<\beta\) deux zéros consécutifs d’une solution non nulle \(x\) de \(y''+q(t)\,y=0\).
Montrer que les zéros de \(x\) forment une suite strictement croissante \((t_n)_{n\in\mathbf{N}}\).
Montrer que \(\displaystyle\frac{\pi}{\sqrt{M}}\leqslant t_{n+1}-t_n\leqslant\frac{\pi}{\sqrt{m}}\) pour tout \(n\in\mathbf{N}\).
[planches/ex0923] ens PC 2013 Soient \(\varphi\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) et \(\alpha\in\mathbf{R}\). Résoudre \[(E)\ :\quad(\varphi(x)-\alpha)u''(x)-\varphi''(x)u(x)=0\] lorsque \(\varphi=\alpha\) possède zéro ou une solution.
[planches/ex0923]
Indication : Déterminer une solution simple de \((E)\).
[planches/ex0957] centrale MP 2013 Soient \(q\in\mathscr{C}^0(\left[a,+\infty\right[,\mathbf{R}_+)\) et \((E)\) l’équation différentielle \(y''=q(x)y\).
[planches/ex0957]
Soit \(f\) une solution de \((E)\) telle que \(f(a)>0\) et \(f'(a)>0\). Montrer que \(f\) et \(f'\) sont strictement positives et que \(f\) tend vers \(+\infty\) en \(+\infty\).
Soient \(u\) et \(v\) les solutions de \((E)\) telles que \(u(a)=1\), \(u'(a)=0\), \(v(a)=0\), \(v'(a)=1\). Calculer \(u'v-uv'\). Montrer que, sur \(\left]a,+\infty\right[\), \(u/v\) et \(u'/v'\) sont monotones de monotonies opposées. Montrer que \(u/v\) et \(u'/v'\) tendent en \(+\infty\) vers la même limite réelle.
Montrer qu’il existe une unique solution \(g\) de \((E)\), strictement positive, telle que \(g(a)=1\) et telle que \(g\) décroisse sur \(\left[a,+\infty\right[\).
Déterminer \(g\) lorsque \(q(x)=\displaystyle{1\over x^4}\) sur \(\left[1,+\infty\right[\). On pourra poser \(y(x)=xz(1/x)\).
[oraux/ex3140] polytechnique MP 2011 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_-^*)\), \((E)\) l’équation différentielle \(y''+q(t)y=0\) et \((\varphi,\psi)\) le couple formé des solutions de \((E)\) sur \(\mathbf{R}\) vérifiant \((\varphi(0)=1,\ \varphi'(0)=0)\) et \((\psi(0)=0,\ \psi'(0)=1)\). Montrer que : \(\forall x\in\mathbf{R}_+\), \(\varphi(x)\geqslant 1\) et \(\psi(x)\geqslant x\).
[oraux/ex3140]
[oraux/ex4930] ens lyon MP 2012 On note \(E\) l’ensemble des \(f\in{\cal C}^1([-1,1],\mathbf{R})\) vérifiant \(f(-1)=-1\) et \(f(1)=1\). On considère \(J : f \in E \mapsto \displaystyle\int_{-1}^1 \left(x\, f'(x)\right)^2\,dx\). La fonction \(J\) possède-t-elle un minimum ?
[oraux/ex4930]
[oraux/ex4963] ens PC 2012 Soient \((E)\) : \(y''+(1+e^{-t}) y=0\) et \((F)\) : \(y''+y=0\). Soient \(f\) une solution non nulle de \((E)\) et \(g\) une solution non nulle de \((F)\).
[oraux/ex4963]
Montrer qu’entre deux zéros de \(g\) il y a au moins un zéro de \(f\).
Montrer que \(f\) possède une infinité de zéros sur \(\mathbf{R}^+\). On note \((x_n)_{n\geqslant 0}\) la suite ordonnée des zéros de \(f\) sur \(\mathbf{R}^+\).
Montrer que \(x_{n+1}-x_n\rightarrow \pi\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow +\infty\).
[planches/ex1056] mines MP 2015 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+)\) et \(x\) une solution strictement positive de \(x''+q(t)x=0\). On pose \(f=x'/x\).
[planches/ex1056]
Donner une équation différentielle satisfaite par \(f\).
Montrer que \(f\) est décroissante positive.
Que peut-on dire de l’intégrabilité de \(q\) ?
[planches/ex9340] ens PSI 2023 Soient \(a>0\) et \(q \in\mathscr{C}^2(\left[a,+\infty\right[,\mathbf{R}^{+*})\) telle que \(\displaystyle\int_a^{+\infty} \sqrt {q(t)}\,{\rm d}t = +\infty\).
[planches/ex9340]
Soit \((E)\) l’équation différentielle \(y''+qy=0\)
Soient \(y_1\) et \(y_2\) deux fonctions de classe \(\mathscr{C}^1\) qui n’ont pas de zéros en commun. On pose \(\Phi = y_1 + iy_2\) et \(\Phi (a) = r_0e^{i\theta_0}\).
Montrer que \(\forall x \geqslant a\), \(\Phi (x) = e^{\Psi(x)}\) où \(\Psi(x)=\displaystyle\int_a^x\frac{\Phi'(t)}{\Phi(t)} \,{\rm d}t + \mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits (r_0) + i\theta_0\).
Montrer que l’on peut écrire \(y_1(x) =r(x)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\theta(x))\) et \(y_2(x) =r(x) \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta(x))\) où \(r(x) = \sqrt{y_1^2(x) + y_2^2(x)}\) et \(\theta (x) = \theta_0 +\displaystyle\int_a^x \displaystyle\frac{y_1y'_2-y_2y'_1}{y_1^2+ y_2^2}\).
On pose \(x \mapsto f(x) =\displaystyle\int_a^{x} \sqrt {q(t)}\,{\rm d}t\).
Montrer que \(f\) réalise une bijection de \(\left[a,+\infty\right[\) sur \(\mathbf{R}^+\).
Soit \(y\) une solution de \((E)\), non identiquement nulle. On pose \(Y = y\mathbin{\circ} f^{-1}\). Montrer que \(Y'' +vY' +Y =0\) où \(v~: t \mapsto\displaystyle\frac{q'(f^{-1}(t))}{2 (q(f^{-1}(t)))^{3/2}}\).
Montrer que \(Y\) et \(Y'\) n’ont pas de zéro en commun et que l’on peut écrire \(Y = r \mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits (\theta)\) et \(Y'= r \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta)\) où \(r\), \(\theta\) sont des fonctions de classe \(\mathscr{C}^1\).
Montrer que \((r^2)' = -2v r^2 \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2(\theta)\). En déduire que \(y\) et \(y'\) sont bornées.
[oraux/ex3077] ens cachan MP 2010 Soient \(T\in\mathbf{R}_+^*\) et \(a\in\mathscr{C}^1(\mathbf{R},\mathbf{R})\) une fonction \(T\)-périodique. On pose \(a_0=\displaystyle{1\over T}\int_0^Ta(x)\,dx\). Pour \(\varepsilon>0\), soit \(a_\varepsilon:x\mapsto a(x/\varepsilon)\). Soit \(\varphi\in\mathscr{C}^1([0,1],\mathbf{R})\).
[oraux/ex3077]
Montrer que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{\varepsilon\rightarrow0^+}\displaystyle\int_0^1a_\varepsilon(u)\varphi(u)\, du=a_0\displaystyle\int_0^1\varphi(u)\,du\).
On suppose désormais qu’il existe \(\alpha>0\) tel que \(\forall x\in\mathbf{R}\), \(a(x)\geqslant\alpha\). Soit \(f\in\mathscr{C}^0([0,1],\mathbf{R})\).
Soit \(\varepsilon>0\). Montrer qu’il existe une unique \(u_\varepsilon\in\mathscr{C}^2([0,1],\mathbf{R})\) solution du problème \((a_\varepsilon u')'=f\) et \(u(0)=u(1)=0\).
Que dire de \(u_\varepsilon\) lorsque \(\varepsilon\rightarrow0^+\) ?
[planches/ex1079] ens paris, ens lyon, ens cachan, ens rennes MP 2016 Soient \(b\in\mathbf{R}_+^*\) et \(f\) une fonction continue définie sur \(\left[1,+\infty\right[\) telle que \(f(r)=O(r^{-b-2})\).
[planches/ex1079]
Soit \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{u'\over r}+{u\over r^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\) et préciser la vitesse de convergence.
Soient \(j>0\) de classe \(\mathscr{C}^1\) sur \(\left[1,+\infty\right[\) telle que \(j'\) tend vers 1 en \(+\infty\) et \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{j'\over j}u'+{u\over j^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\).
Un exercice sélectionné se reconnaît à sa bordure rouge