[oraux/ex3129] ens lyon MP 2011 Soient \(f\) et \(g\) deux fonctions de classe \(C^2\) de \(\mathbf{R}\) dans \(\mathbf{R}\) telle que \((f,g)\) soit libre. Donner une condition nécessaire et suffisante pour qu’existent deux fonctions \(a\) et \(b\) continues et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que : \(f''+af'+bf=0\) et \(g''+ag'+bg=0\).
[oraux/ex3129]
[oraux/ex4962] ens PC 2012 Soit \(a\in{\cal C}^\infty(\mathbf{R},\mathbf{R})\). On suppose qu’il existe \((A,B)\in\mathbf{R}\) tels que : \(\forall x\in\mathbf{R}\), \(0<A\leqslant a(x)\leqslant B\).
[oraux/ex4962]
Soit \(\varphi\in{\cal C}^\infty(\mathbf{R},\mathbf{R})\) non nulle et telle que \(\varphi ''=a\varphi\). Que dire de l’ensemble des zéros de \(\varphi\) ?
Soit \(\varphi\in{\cal C}^\infty(\mathbf{R},\mathbf{R})\) non nulle et telle que \(\varphi ''=-a\varphi\). Que dire de l’ensemble des zéros de \(\varphi\) ?
[planches/ex9269] ens saclay, ens rennes MP 2023 Soient \(I\) un intervalle non trivial de \(\mathbf{R}\), et \(a\), \(b\) deux fonctions continues de \(I\) dans \(\mathbf{R}\).
[planches/ex9269]
On considère l’équation différentielle \((E)\) : \(x''+a(t)\,x'+b(t)\,x=0\).
Soit \(x\) une solution non nulle de \((E)\). Montrer que les zéros de \(x\) sont isolés.
On suppose \(a\) de classe \(\mathscr{C}^1\). Montrer qu’il existe \(z\) de classe \(\mathscr{C}^2\) de \(I\) dans \(\mathbf{R}\), et \(q : I \rightarrow \mathbf{R}\) continue telles que \(x \mapsto [t \mapsto x(t)\,e^{z(t)}]\) définisse une bijection de l’ensemble des solutions de \((E)\) sur celui des solutions de \(y''+q(t)\,y=0\).
Soient \(q_1\), \(q_2\) deux fonctions continues de \(I\) dans \(\mathbf{R}\) telles que \(q_1 \leqslant q_2\). On considère l’équation différentielle \((E_i)\) : \(y''+q_i(t)\, y=0\) pour \(i \in \{1,2\}\). Soient \(y_1\), \(y_2\) des solutions respectives de \((E_1)\) et \((E_2)\) sur \(I\). Soient \(\alpha<\beta\) deux zéros consécutifs de \(y_1\).
Montrer que \(y_2\) s’annule dans \([\alpha,\beta]\).
Soient \(q : I \rightarrow \mathbf{R}\) continue, et \(m,M\) deux réels strictement positifs tels que \(m \leqslant q \leqslant M\).
Soient \(\alpha<\beta\) deux zéros consécutifs d’une solution non nulle de \(y''+q(t)y=0\). Montrer que \(\displaystyle\frac{\pi}{\sqrt{M}} \leqslant\beta-\alpha \leqslant\frac{\pi}{\sqrt{m}}\).
[oraux/ex2974] mines PSI 2008 Soient \(p\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_-^*)\) et \((E)\) : \(y''+py=0\). Soit \(f\) une solution de \((E)\).
[oraux/ex2974]
On suppose : \(\forall x\in\mathbf{R}\), \(f(x)>0\). Montrer que \(f\) est non bornée.
On suppose qu’il existe un unique \(a\in\mathbf{R}\) tel que \(f(a)=0\). Montrer que \(f\) est non bornée.
On suppose que \(f\) est bornée. Montrer que \(f\) est identiquement nulle.
[planches/ex6022] polytechnique PC 2020 Soit \(f:\left[0,+\infty\right[\rightarrow\mathbf{R}\) dérivable, positive, décroissante et non intégrable sur \(\left[0,+\infty\right[\).
[planches/ex6022]
Soit \(y:\left[0,+\infty\right[\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^2\), non identiquement nulle et vérifiant \(y''+fy=0\).
Est-il possible d’avoir \(y\geqslant 0\) ? On pourra considérer \(E=fy^2+(y')^2\).
Soit \(t_0>0\) tel que \(y(t_0)=0\). Montrer qu’il existe \(\varepsilon>0\) tel que \(\forall t\in[t_0-\varepsilon,t_0+\varepsilon]\setminus\{t_0\}\), \(y(t)\neq 0\).
Déduire de la première question que \(y\) s’annule. Montrer que \(y\) admet une infinité de zéros. Comment interpréter le résultat d’un point de vue physique ?
[planches/ex1110] centrale MP 2016 Soit \((E)\) l’équation différentielle : \((1-x)^3y''(x)=y(x)\).
[planches/ex1110]
Déterminer la structure de l’ensemble des solutions de \((E)\) sur \(\left]-\infty,1\right[\). Montrer que toutes ces solutions sont de classe \(\mathscr{C}^\infty\) sur \(\left]-\infty,1\right[\).
Soient \(y\) une solution de \((E)\) sur \(\left]-\infty,1\right[\) et, pour \(n\) dans \(\mathbf{N}\), \(a_n=\displaystyle{y^{(n)}(0)\over n\,!}\). Trouver une relation de récurrence satisfaite par \((a_n)_{n\geqslant 0}\).
Montrer que les solutions de \((E)\) sur \(\left]-\infty,1\right[\) sont développables en série entière au voisinage de 0.
Soit \(y\) la solution de \((E)\) sur \(\left]-\infty,1\right[\) telle que \(y(0)=0\), \(y'(0)=1\). Que dire de \(y(x)\) lorsque \(x\) tend vers 1 ?
[planches/ex0917] ens paris, ens lyon, ens cachan MP 2013 Soient \(\eta\) et \(\varphi\) deux fonctions de classe \(\mathscr{C}^\infty\) et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{R}\), avec \(\eta\) à valeurs dans \(\mathbf{R}_+^*\) et \((E)\) l’équation différentielle : \(y''-\eta y=\varphi\).
[planches/ex0917]
Montrer que \((E)\) admet au plus une solution 1-périodique.
On suppose \(\eta\) constante. Montrer que \((E)\) possède une solution 1-périodique.
Établir l’existence de \(\alpha>0\) tel que, pour \(\lambda\in\mathbf{R}\) vérifiant \(0<|\lambda|<\alpha\), l’équation \(u''-\lambda\eta u=\varphi\) admette une solution 1-périodique.
Indication : On écrit \(\varphi=\lambda\varphi_1+\varphi_0\) avec \(\varphi_1\) constante et \(\displaystyle\int_0^1\varphi_0=0\). On cherche alors la solution \(u\) sous la forme \(\displaystyle\sum\limits_{n=0}^{+\infty}\lambda^n(u_n+c_n)\) où \(c_n\) est constante de \(u_n\) est une fonction 1-périodique vérifiant \(u_n(0)=0\).
[oraux/ex3174] centrale MP 2011 (avec Maple)
[oraux/ex3174]
Maple
Soit \(f\) une fonction continue de \(\mathbf{R}^2\) dans \(\mathbf{R}\). On suppose qu’il existe \(L>0\) tel que : \(\forall(x,y,t)\in\mathbf{R}^3\), \(|f(t,x)-f(t,y)|\leqslant L|x-y|\). On fixe \(a\), \(b\) dans \(\mathbf{R}\). Si \(x\) est une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\), on note \(T(x)\) la fonction définie par : \[\forall t\in\mathbf{R},\quad T(x)(t)=a+bt+\int_0^t(t-s)f(s,x(s))\,ds.\]
Vérifier que \(T(x)\) est de classe \(C^1\) sur \(\mathbf{R}\).
On suppose \(f(t,x)=(2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits t-2)x\). On prend pour \(y\) la fonction nulle. Tracer, pour \(8\leqslant n\leqslant 12\), le graphe de \(T^n(y)\) sur \([-6,6]\).
Montrer que pour toute \(x\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) la suite \((T^n(x))\) converge uniformément sur tout segment de \(\mathbf{R}\) vers une fonction \(y\) telle que \(y(0)=a\), \(y'(0)=b\), \(\forall t\in\mathbf{R}\), \(y''(t)=f(t,y(t))\).
[oraux/ex3147] polytechnique, espci PC 2011 Soit \(y\) une solution de \(y''(x)=xy(x)\) sur \([0,1]\) telle que \(y(0)=1\) et \(y'(0)=0\). Montrer : \(\forall x\in[0,1]\), \(|y'(x)|+|y(x)|\leqslant e^x\).
[oraux/ex3147]
[planches/ex1079] ens paris, ens lyon, ens cachan, ens rennes MP 2016 Soient \(b\in\mathbf{R}_+^*\) et \(f\) une fonction continue définie sur \(\left[1,+\infty\right[\) telle que \(f(r)=O(r^{-b-2})\).
[planches/ex1079]
Soit \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{u'\over r}+{u\over r^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\) et préciser la vitesse de convergence.
Soient \(j>0\) de classe \(\mathscr{C}^1\) sur \(\left[1,+\infty\right[\) telle que \(j'\) tend vers 1 en \(+\infty\) et \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{j'\over j}u'+{u\over j^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\).
Vous pouvez choisir d'afficher tous les résultats d'une requête de façon individuelle, ou en les regroupant par familles d'exercices