[equadiff/ex0881] Soit \((E)\) : \(y''+ay'+by=0\) une équation différentielle linéaire du deuxième ordre homogène à coefficients non forcément constants, de classe \(C^1\) sur l’intervalle \(I\).
[equadiff/ex0881]
Écrire l’équation \((E')\) transformé de \((E)\) en posant \(y=uz\).
Déterminer une équation différentielle simple que doit vérifier la fonction \(u\) de sorte de \((E')\) ne contienne plus de terme en \(z'\), et résoudre cette équation en \(u\).
Montrer que \((E')\) peut se mettre sous la forme : \(z''=cz\), et exprimer la fonction \(c\) en fonction de \(a\) et \(b\).
Déterminer \(u\) et \(c\) quand \(a\) et \(b\) sont constants.
[planches/ex8133] mines MP 2022 Soit \(f:\mathbf{R}_+\longrightarrow\mathbf{R}_+\) continue. On se donne \(c\geqslant 0\), on pose \(F:x\longmapsto c+\displaystyle\int_0^xf(t)\,dt\) et on suppose que \(\forall x\in\mathbf{R}_+\), \(xf(x)\leqslant F(x)\).
[planches/ex8133]
Étudier les variations de \(x\longmapsto\displaystyle{F(x)\over x}\) sur \(\mathbf{R}_+^*\) et en déduire que \(f\) est bornée.
Soit \(g\) une solution sur \(\mathbf{R}_+\) de l’équation différentielle \(y''+xy=0\). En s’intéressant à \(g^2\), montrer que \(g\) est bornée.
[planches/ex3377] polytechnique, espci PC 2018 Soit \(q\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) telle que \(q>0\), \(q'>0\). Montrer que les solutions de l’équation différentielle \(y''+qy=0\) sont bornées sur \(\mathbf{R}_+\).
[planches/ex3377]
[oraux/ex3129] ens lyon MP 2011 Soient \(f\) et \(g\) deux fonctions de classe \(C^2\) de \(\mathbf{R}\) dans \(\mathbf{R}\) telle que \((f,g)\) soit libre. Donner une condition nécessaire et suffisante pour qu’existent deux fonctions \(a\) et \(b\) continues et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que : \(f''+af'+bf=0\) et \(g''+ag'+bg=0\).
[oraux/ex3129]
[planches/ex0965] centrale PSI 2013 Soit \(F\) l’espace vectoriel des fonctions continues et bornées sur \(\left]0,+\infty\right[\). Pour \(f\in F\), on considère l’équation différentielle \((E)\) : \(x^2y''+2y'-2y=f(x)\).
[planches/ex0965]
Trouver les fonctions \(x\mapsto x^r\) solutions de l’équation homogène associée à \((E)\).
Soit \(g(x)=\displaystyle\int_0^x{-tf(t)\over3x^2}\,dt+\int_x^{+\infty}{-xf(t)\over3t^2}\,dt\). Montrer que \(g\) est bien définie sur \(\left]0,+\infty\right[\) puis vérifier que \(g\) est solution de \((E)\).
Quel est le lien entre les deux questions précédentes ?
Montrer que l’application qui envoie \(f\) sur \(g\) définit un endomorphisme de \(F\).
[oraux/ex3077] ens cachan MP 2010 Soient \(T\in\mathbf{R}_+^*\) et \(a\in\mathscr{C}^1(\mathbf{R},\mathbf{R})\) une fonction \(T\)-périodique. On pose \(a_0=\displaystyle{1\over T}\int_0^Ta(x)\,dx\). Pour \(\varepsilon>0\), soit \(a_\varepsilon:x\mapsto a(x/\varepsilon)\). Soit \(\varphi\in\mathscr{C}^1([0,1],\mathbf{R})\).
[oraux/ex3077]
Montrer que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{\varepsilon\rightarrow0^+}\displaystyle\int_0^1a_\varepsilon(u)\varphi(u)\, du=a_0\displaystyle\int_0^1\varphi(u)\,du\).
On suppose désormais qu’il existe \(\alpha>0\) tel que \(\forall x\in\mathbf{R}\), \(a(x)\geqslant\alpha\). Soit \(f\in\mathscr{C}^0([0,1],\mathbf{R})\).
Soit \(\varepsilon>0\). Montrer qu’il existe une unique \(u_\varepsilon\in\mathscr{C}^2([0,1],\mathbf{R})\) solution du problème \((a_\varepsilon u')'=f\) et \(u(0)=u(1)=0\).
Que dire de \(u_\varepsilon\) lorsque \(\varepsilon\rightarrow0^+\) ?
[concours/ex1374] ens cachan MP 1998 Soient \(A\) et \(B\) dans \(\mathbf{R}^2\) euclidien, et \[E=\{u\in\mathscr{C}^1([0,1],\mathbf{R}^2)\mid u(0)=A,\ u(1)=B\}.\] Soit \(n\) une application de \(\mathbf{R}^2\) dans \(\mathbf{R}_+^*\), de classe \(C^2\). Pour \(u\in E\), on pose \(F(u)=\displaystyle\int_0^1n(u(t))\|u'(t)\|^2\,dt\). On suppose qu’il existe \(u_0\in E\) tel que \(F(u_0)=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits_{u\in E}F(u)\). Montrer que \(u_0\) est de classe \(C^2\) et trouver une équation différentielle vérifiée par \(u_0\).
[concours/ex1374]
[concours/ex4044] polytechnique pox P 1990 Soit \(f(x)=\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\over x}\).
[concours/ex4044]
Trouver une équation différentielle linéaire, d’ordre \(2\), à coefficients polynomiaux, satisfaite par \(f\).
Résoudre cette équation.
[oraux/ex3146] polytechnique, ens cachan PSI 2011
[oraux/ex3146]
Donner un exemple de fonction continue, non identiquement nulle au voisinage de 0 et telle que 0 n’est pas un zéro isolé.
Soient \(f:\mathbf{R}\rightarrow\mathbf{R}\) dérivable et \(a\in\mathbf{R}\). On suppose que \(f(a)=0\) et que \(a\) n’est pas un zéro isolé de \(f\). Montrer que \(f'(a)=0\).
Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\), \(f:[a,b]\rightarrow\mathbf{R}\) dérivable telle que \(f(a)=f(b)=0\) et \(\forall x\in\left]a,b\right[\), \(f(x)\geqslant 0\). Montrer : \(f'(a)f'(b)\leqslant 0\).
Soient \(I\) un intervalle de \(\mathbf{R}\), \(p\) et \(q\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle : \(y''+py'+qy=0\).
Soit \(f\) une solution non identiquement nulle de \((E)\). Montrer que les zéros de \(f\) sont isolés.
Soient \(f\) et \(g\) deux solutions de \((E)\) et \(t_0\in I\). On suppose qu’il existe \(c\in\mathbf{R}\) tel que \(f(t_0)=cg(t_0)\) et \(f'(t_0)=cg'(t_0)\). Montrer : \(f=cg\).
Soient \(f\) et \(g\) deux solutions indépendantes de \((E)\). Montrer que le wronskien \(W\) de \(f\) et de \(g\) ne s’annule pas. Exprimer \(W(t)\) en fonction de \(W(t_0)\). Montrer que, entre deux zéros consécutifs de \(f\), la fonction \(g\) s’annule.
[oraux/ex4963] ens PC 2012 Soient \((E)\) : \(y''+(1+e^{-t}) y=0\) et \((F)\) : \(y''+y=0\). Soient \(f\) une solution non nulle de \((E)\) et \(g\) une solution non nulle de \((F)\).
[oraux/ex4963]
Montrer qu’entre deux zéros de \(g\) il y a au moins un zéro de \(f\).
Montrer que \(f\) possède une infinité de zéros sur \(\mathbf{R}^+\). On note \((x_n)_{n\geqslant 0}\) la suite ordonnée des zéros de \(f\) sur \(\mathbf{R}^+\).
Montrer que \(x_{n+1}-x_n\rightarrow \pi\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow +\infty\).
Vous pouvez choisir le type d'affichage de la liste des résultats : tableau ou liste