[concours/ex2958] ccp M 1994 Construire la courbe d’équation polaire : \[\rho=\displaystyle{\theta+1\over\theta-1}.\] Étudier ses points d’inflexion.
[concours/ex2958]
[oraux/ex1712] mines MP 2010 Étudier la courbe d’équation polaire : \(\rho=\displaystyle{1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(3\theta)}\).
[oraux/ex1712]
[geo.diff/ex0091] Tracer la courbe \(C\) suivante, définie en polaires par : \[\rho={1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta}.\]
[geo.diff/ex0091]
[geo.diff/ex0275] Construire la courbe \(r=\displaystyle{1+2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\over1-2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta}\).
[geo.diff/ex0275]
[planches/ex5310] mines PC 2019 Soient \(\mathscr{C}\) un cercle de rayon \(r>0\) et \(A\) un point de \(\mathscr{C}\). On note \(\Sigma\) l’ensemble des projetés orthogonaux de \(A\) sur les droites tangentes à \(\mathscr{C}\). Étudier \(\Sigma\). Faire un dessin.
[planches/ex5310]
Vous pouvez choisir les informations imprimées pour chaque exercice des PDF : référence interne, taille de la famille