[geo.diff/ex0247] Soit \(\Gamma\) la courbe d’équation polaire \(\rho=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta-\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\displaystyle{\theta\over2}\).
[geo.diff/ex0247]
Étudier et tracer \(\Gamma\).
[oraux/ex1607] mines PSI 2008 Étudier la courbe définie par : \(\rho(t)=\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits t\) et \(\theta(t)=2t-\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits t\).
[oraux/ex1607]
[concours/ex2277] polytechnique P 1995 Étudier l’arc paramétré en coordonnées polaires par : \[\theta(t)=t+{1\over t},\qquad r(t)=t^2-4.\]
[concours/ex2277]
[geo.diff/ex0215] La fonction d’onde de l’orbitale \(2p_z\) s’écrit en coordonnées sphériques : \[\psi(\rho,\theta,\varphi)=\left({1\over2\sqrt6}\Bigl({Z\over a_0}\Bigr)^{\!3/2}\,{Z\rho\over a_0}e^{-Z\rho/a_0}\right) \left({\sqrt3\over2\sqrt\pi}\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\right).\]
[geo.diff/ex0215]
Quelle est la particularité de la partie angulaire (le second terme du produit) de la fonction d’onde ? On la note \(Y(\theta)\).
Représenter dans le plan \(zOy\) les courbes définies par les équations polaire : \[\rho={\sqrt3\over2\sqrt\pi}|Y(\theta)|\quad\hbox{et}\quad \rho={3\over4\pi}Y^2(\theta),\] où \(\theta\) est l’angle entre \(Oz\) et le rayon vecteur.
[geo.diff/ex0429] Tracer la courbe \(r^2=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\).
[geo.diff/ex0429]
[concours/ex3406] ccp M 1993 Étudier la courbe \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\theta\over1-2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\).
[concours/ex3406]
[geo.diff/ex0435] Tracer la courbe \(r=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits4\theta\).
[geo.diff/ex0435]
[oraux/ex1464] centrale 2004 Construire la courbe en polaire d’équation : \[\rho={1-2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\over1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}.\]
[oraux/ex1464]
[geo.diff/ex0245] Étudier et tracer la courbe \(\mathscr{C}\) d’équation polaire : \[\rho={\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits3\theta\over\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}.\]
[geo.diff/ex0245]
[oraux/ex3670] polytechnique MP 2011 Tracer la courbe d’équation polaire \(r(\theta)=\displaystyle{1\over2}+\sum\limits_{k=1}^\infty{(-1)^{k-1} \mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(3k\theta)\over(3k+1)(3k-1)}\).
[oraux/ex3670]
[geo.diff/ex0029] Construire la courbe \(\rho=a\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\displaystyle{2\theta\over5}\), où \(a>0\).
[geo.diff/ex0029]
[geo.diff/ex0194] Étude de la courbe définie en polaires par : \[\rho={1\over\displaystyle{5\over2}+ \bigl(2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\displaystyle{\theta\over2}- 5\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\displaystyle{\theta\over2}\bigr)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\displaystyle{\theta\over2}}.\]
[geo.diff/ex0194]
[geo.diff/ex0141]
Tracer \[(C)\ :\ \rho=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3\theta-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^3\theta.\]
Déterminer les points de \((C)\) en lesquels la tangente est de pente \(1\).
[concours/ex3901] ensi M 1992 Construire la courbe définie par : \[\theta=t-2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits t,\qquad\rho=\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits t.\]
[concours/ex3901]
[geo.diff/ex0246] Étudier et tracer la courbe \(\mathscr{C}\) d’équation polaire : \[\rho={\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits4\theta\over\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}.\]
[geo.diff/ex0246]
[geo.diff/ex0216] La partie angulaire de la fonction d’onde de l’orbitale \(3d_{x^2-y^2}\) est : \[Y(\theta,\varphi)={1\over4}\sqrt{15\over\pi}\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\varphi.\]
[geo.diff/ex0216]
Montrer que les axes \(Ox\) et \(Oz\) sont des axes de symétrie de \(\rho=Y(\theta,\varphi)\).
Tracer la courbe définie par l’équation polaire \(\rho=Y\Bigl(\displaystyle{\pi\over2},\varphi\Bigr)\), dans le plan \(xOy\), avec \(\varphi\) l’angle entre \(Ox\) et le rayon vecteur.
Imaginer la surface définie en sphériques par \(\rho=Y(\theta,\varphi)\) dans l’espace.
[concours/ex3898] ensi M 1992 Tracer et étudier la courbe définie en polaires par : \[\rho=\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits{\theta\over3}.\]
[concours/ex3898]
[oraux/ex1681] centrale PSI 2009 Tracer la courbe d’équation polaire \(\rho=\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits(1-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta)\).
[oraux/ex1681]
[concours/ex2957] ccp M 1994 Construire la courbe d’équation polaire : \(\rho=\displaystyle{4\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\over\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta}\).
[concours/ex2957]
[oraux/ex1513] mines PC 2005 Étude de la courbe d’équation polaire : \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\).
[oraux/ex1513]
Vous pouvez choisir l'ordre d'affichage initial des résultats d'une requête