[oraux/ex1527] centrale PSI 2005 On considère la courbe d’équation polaire \(\rho(\theta)=\displaystyle{1\over\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta+2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits5\theta}\). Rechercher ses points d’inflexion.
[oraux/ex1527]
[geo.diff/ex0132] Construire la courbe suivante, définie en coordonnées polaires : \[\rho={\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\over1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta}.\]
[geo.diff/ex0132]
[geo.diff/ex0141]
Tracer \[(C)\ :\ \rho=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3\theta-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^3\theta.\]
Déterminer les points de \((C)\) en lesquels la tangente est de pente \(1\).
[concours/ex3900] ensi M 1992 Tracer et étudier la courbe définie en polaires par : \[\rho={a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^2\theta\over2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}.\]
[concours/ex3900]
[geo.diff/ex0216] La partie angulaire de la fonction d’onde de l’orbitale \(3d_{x^2-y^2}\) est : \[Y(\theta,\varphi)={1\over4}\sqrt{15\over\pi}\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\varphi.\]
[geo.diff/ex0216]
Montrer que les axes \(Ox\) et \(Oz\) sont des axes de symétrie de \(\rho=Y(\theta,\varphi)\).
Tracer la courbe définie par l’équation polaire \(\rho=Y\Bigl(\displaystyle{\pi\over2},\varphi\Bigr)\), dans le plan \(xOy\), avec \(\varphi\) l’angle entre \(Ox\) et le rayon vecteur.
Imaginer la surface définie en sphériques par \(\rho=Y(\theta,\varphi)\) dans l’espace.
Sur les pages de résultats, vous pouvez déterminer le nombre d'énoncés affichés