[geo.diff/ex0214] L’expression analytique d’une orbitale atomique de niveau \(d\) en coordonnées sphériques s’écrit : \[\Psi(\rho,\theta,\varphi)= \left({4\over81\sqrt{30}}a_0^{-7/2}\rho^2e^{-\rho/3a_0}\right) \left({1\over4}\sqrt{5\over\pi}(3\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^2\theta-1)\right).\] On étudie la partie angulaire de la fonction \(\Psi\) c’est-à-dire le second terme du produit que l’on note \(Y\).
[geo.diff/ex0214]
Représenter la courbe (dans le plan \(xOz\)) définie par l’équation polaire \(\rho=Y(\theta)\), où \(\theta\) est l’angle entre \(Oz\) et le rayon vecteur.
En remarquant que \(Y\) ne dépend pas de \(\varphi\), que peut-on en déduire pour la surface obtenue en portant dans la direction donnée \((\theta,\varphi)\) un vecteur proportionnel au carré de la partie angulaire de la fonction d’onde \(\Psi\) ? Tracer l’allure de l’intersection de cette surface avec le plan \(xOz\).
Imaginer alors la surface définie en coordonnées sphériques par l’équation \(\rho=Y^2(\theta)\).
[concours/ex2957] ccp M 1994 Construire la courbe d’équation polaire : \(\rho=\displaystyle{4\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\over\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta}\).
[concours/ex2957]
[concours/ex4180] mines M 1990 Construire la courbe d’équation polaire : \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta\over2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta-1}\).
[concours/ex4180]
[oraux/ex1572] centrale MP 2006 Étudier et tracer la courbe d’équation polaire \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(2\theta)\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\theta)}\). Calculer l’aire entre la courbe et l’asymptote.
[oraux/ex1572]
[geo.diff/ex0249] Soit \(\Gamma\) la courbe d’équation polaire \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\displaystyle{\theta\over2}\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta-1}\).
[geo.diff/ex0249]
Étudier et tracer \(\Gamma\).
[geo.diff/ex0459] Tracer le graphe de \(r^2=1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\).
[geo.diff/ex0459]
[geo.diff/ex0188] Étude de la courbe définie par l’équation polaire \(\rho=\theta\).
[geo.diff/ex0188]
[oraux/ex1513] mines PC 2005 Étude de la courbe d’équation polaire : \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\).
[oraux/ex1513]
[concours/ex3900] ensi M 1992 Tracer et étudier la courbe définie en polaires par : \[\rho={a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^2\theta\over2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}.\]
[concours/ex3900]
[concours/ex3899] ensi M 1992 Tracer et étudier la courbe définie en polaires par : \[\rho=\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits\left|\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\right|.\]
[concours/ex3899]
[geo.diff/ex0247] Soit \(\Gamma\) la courbe d’équation polaire \(\rho=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta-\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\displaystyle{\theta\over2}\).
[geo.diff/ex0247]
[concours/ex2277] polytechnique P 1995 Étudier l’arc paramétré en coordonnées polaires par : \[\theta(t)=t+{1\over t},\qquad r(t)=t^2-4.\]
[concours/ex2277]
[oraux/ex1464] centrale 2004 Construire la courbe en polaire d’équation : \[\rho={1-2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\over1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}.\]
[oraux/ex1464]
[geo.diff/ex0141]
Tracer \[(C)\ :\ \rho=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3\theta-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^3\theta.\]
Déterminer les points de \((C)\) en lesquels la tangente est de pente \(1\).
[geo.diff/ex0029] Construire la courbe \(\rho=a\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\displaystyle{2\theta\over5}\), où \(a>0\).
[geo.diff/ex0029]
[oraux/ex1638] centrale PC 2008 (avec Maple)
[oraux/ex1638]
Maple
Soit \(\mathscr{C}\) le support de \(t\mapsto\left(\sqrt{1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(2t)}+\sqrt{1-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(2t)}\right)e^{it}\).
Tracer \(\mathscr{C}\). Quelles sont les symétries ?
Montrer que \(\mathscr{C}\) est la réunion de quatre graphes : \(\mathscr{C}_1\), \(\mathscr{C}_2\), \(\mathscr{C}_3\), \(\mathscr{C}_4\) qui se déduisent par une rotation à déterminer.
Le graphe \(\mathscr{C}_1\) est défini pour \(t\in[-\pi/4,\pi/4]\). Montrer que \(\mathscr{C}_1\) est un demi-cercle dont on déterminera le centre.
Calculer les coefficients de Fourier \(c_n(f)\) de \(f\) pour \(n\in\{-5,\ldots,5\}\).
[geo.diff/ex0274] Construire la courbe \(r=1+\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\theta\) ; on précisera les points où la tangente est parallèle à l’axe \((Oy)\).
[geo.diff/ex0274]
[concours/ex2129] ccp, tpe, int, ivp MP 1999 Étude de l’arc d’équation polaire \(\rho=\displaystyle{2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\over\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^2\theta}\).
[concours/ex2129]
[oraux/ex1580] centrale PC 2006 Étudier la courbe d’équation polaire \(\rho=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta\) et calculer sa tangente au point de paramètre \(\theta\).
[oraux/ex1580]
[concours/ex5843] mines PC 2007 Étudier la courbe d’équation polaire \(\rho:\theta\mapsto\displaystyle{\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\over\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta}\).
[concours/ex5843]
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple uniquement des exercices posés aux concours