[geo.diff/ex0420] Tracer la courbe \(r=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits2\theta\).
[geo.diff/ex0420]
[geo.diff/ex0216] La partie angulaire de la fonction d’onde de l’orbitale \(3d_{x^2-y^2}\) est : \[Y(\theta,\varphi)={1\over4}\sqrt{15\over\pi}\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\varphi.\]
[geo.diff/ex0216]
Montrer que les axes \(Ox\) et \(Oz\) sont des axes de symétrie de \(\rho=Y(\theta,\varphi)\).
Tracer la courbe définie par l’équation polaire \(\rho=Y\Bigl(\displaystyle{\pi\over2},\varphi\Bigr)\), dans le plan \(xOy\), avec \(\varphi\) l’angle entre \(Ox\) et le rayon vecteur.
Imaginer la surface définie en sphériques par \(\rho=Y(\theta,\varphi)\) dans l’espace.
[geo.diff/ex0431] Tracer la courbe \(r=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\displaystyle{\theta\over2}\).
[geo.diff/ex0431]
[concours/ex3901] ensi M 1992 Construire la courbe définie par : \[\theta=t-2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits t,\qquad\rho=\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits t.\]
[concours/ex3901]
[geo.diff/ex0132] Construire la courbe suivante, définie en coordonnées polaires : \[\rho={\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\over1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta}.\]
[geo.diff/ex0132]
[concours/ex2129] ccp, tpe, int, ivp MP 1999 Étude de l’arc d’équation polaire \(\rho=\displaystyle{2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\over\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^2\theta}\).
[concours/ex2129]
[oraux/ex1541] tpe PSI 2005 Tracer la courbe définie en coordonnées polaires par \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\over1-2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\).
[oraux/ex1541]
[geo.diff/ex0134] Construire la courbe suivante, définie en coordonnées polaires : \[\rho={\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits2\theta\over2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta-1}.\]
[geo.diff/ex0134]
[oraux/ex1696] MP 2009 Tracer la courbe \(r=2(\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta)\). Préciser les tangentes en \(\theta=0\) et \(\theta=\pi\).
[oraux/ex1696]
[geo.diff/ex0215] La fonction d’onde de l’orbitale \(2p_z\) s’écrit en coordonnées sphériques : \[\psi(\rho,\theta,\varphi)=\left({1\over2\sqrt6}\Bigl({Z\over a_0}\Bigr)^{\!3/2}\,{Z\rho\over a_0}e^{-Z\rho/a_0}\right) \left({\sqrt3\over2\sqrt\pi}\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\right).\]
[geo.diff/ex0215]
Quelle est la particularité de la partie angulaire (le second terme du produit) de la fonction d’onde ? On la note \(Y(\theta)\).
Représenter dans le plan \(zOy\) les courbes définies par les équations polaire : \[\rho={\sqrt3\over2\sqrt\pi}|Y(\theta)|\quad\hbox{et}\quad \rho={3\over4\pi}Y^2(\theta),\] où \(\theta\) est l’angle entre \(Oz\) et le rayon vecteur.
Vous pouvez désactiver ou réduire la fréquence d'affichage de ces fenêtres d'astuces