[equadiff/ex0532] L’aire du secteur délimité par un arc de courbe et les rayons vecteurs aux extrémités de l’arc est égale à la moitié de la longueur de l’arc. Trouver la courbe.
[equadiff/ex0532]
[geo.diff/ex0146]
Tracer \((C)\) : \(\rho=\displaystyle{1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3\displaystyle{\theta\over3}}\).
Une droite \((D_\theta)\), passant par \(O\) et d’angle polaire \(\theta\), coupe \((C)\) en trois points. Montrer que les tangentes à \((C)\) en ces trois points forment un triangle équilatéral.
[concours/ex4293] centrale M 1990 Soit \(C\) un cercle de centre \(O\) dans un plan euclidien, \(A\) un point fixe du cercle, \(P\) et \(Q\) deux points variables du cercle tels que : \[\bigl(\mathchoice{\overrightarrow{OA}}{\overrightarrow{OA}}{\scriptstyle \overrightarrow{\scriptstyle OA}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle OA}},\mathchoice{\overrightarrow{OP}}{\overrightarrow{OP}}{\scriptstyle \overrightarrow{\scriptstyle OP}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle OP}}\bigr)=2\varphi, \qquad\bigl(\mathchoice{\overrightarrow{OA}}{\overrightarrow{OA}}{\scriptstyle \overrightarrow{\scriptstyle OA}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle OA}},\mathchoice{\overrightarrow{OQ}}{\overrightarrow{OQ}}{\scriptstyle \overrightarrow{\scriptstyle OQ}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle OQ}}\bigr)=-\varphi\quad\hbox{($\varphi$ variable).}\] déterminer l’équation polaire du lieu du milieu \(M\) de \([P,Q]\). Tracé.
[concours/ex4293]
[oraux/ex1687] centrale PC 2009 Soit \(\Gamma\) la courbe d’équation polaire \(\rho(\theta)=\displaystyle{2\over2+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\). Déterminer les axes de symétrie de la courbe.
[oraux/ex1687]
[geo.diff/ex0145]
Tracer \((C)\) : \(\rho=-1+\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\displaystyle{\theta\over2}\).
Une droite variable \((D)\) passant par \(O\) coupe \((C)\) en \(M_1\) et \(M_2\). Déterminer le lieu \(I\) du milieu de \(M_1M_2\).
[equadiff/ex0546] Trouver l’équation de la courbe pour laquelle la sous-tangente est égale à la sous-normale polaire.
[equadiff/ex0546]
[oraux/ex5882] ccp PSI 2012 Un point \(P\) parcourt le cercle de centre \(O\) et de rayon \(OA\). Déterminer la position du point de contact entre la droite \((OP)\) et le cercle inscrit dans le triangle \(OAP\), puis l’aire de la surface délimitée par ces points.
[oraux/ex5882]
[concours/ex2130] ccp, tpe, int, ivp MP 1999 Soit \(Oxy\) un repère orthonormal du plan. Déterminer les arcs \(\Gamma\), \(C^1\), réguliers, tels que la symétrique de la tangente en tout point \(M\) de \(\Gamma\) par rapport à \(OM\) soit parallèle à \(Ox\).
[concours/ex2130]
[geo.diff/ex0436] Trouver la plus grande valeur de \(y\) sur la cardioïde \(r=2(1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\).
[geo.diff/ex0436]
[equadiff/ex0536] Déterminer les trajectoires orthogonales de la famille de cardioïdes : \[\rho=C(1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta).\]
[equadiff/ex0536]
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez un énoncé, voire ne rien afficher