[concours/ex0289] mines MP 1996 On considère le plan affine euclidien rapporté à un repère orthonormé et les points \(A\), \(B\), \(C\), \(D\) de coordonnées respectives \((1,0)\), \((0,1)\), \((-1,0)\), \((0,-1)\). Étudier l’ensemble des points \(M\) du plan tels que \(AM.BM.CM.DM=1\).
[concours/ex0289]
[concours/ex2130] ccp, tpe, int, ivp MP 1999 Soit \(Oxy\) un repère orthonormal du plan. Déterminer les arcs \(\Gamma\), \(C^1\), réguliers, tels que la symétrique de la tangente en tout point \(M\) de \(\Gamma\) par rapport à \(OM\) soit parallèle à \(Ox\).
[concours/ex2130]
[geo.diff/ex0441] Trouver les points d’intersection des courbes \(r=1\) et \(r=-1\).
[geo.diff/ex0441]
[geo.diff/ex0439] Trouver les points d’intersection des courbes \(r=\sqrt2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\) et \(r^2=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta\).
[geo.diff/ex0439]
[equadiff/ex0553] Trouver les trajectoires orthogonales de la famille de courbes définie par : \[\rho=a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta.\]
[equadiff/ex0553]
Vous pouvez limiter le nombre de résultats d'une requête, pour en accélérer l'affichage