[concours/ex2048] centrale MP 1999 Soit \(\mathscr{C}\) la courbe d’équation \(\rho=1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\). Une droite passant par l’origine \(O\) recoupe \(\mathscr{C}\) en \(P\) et \(Q\).
[concours/ex2048]
Trouver le lieu de l’isobarycentre de \(P\), \(Q\) et \(A(2,0)\).
Lieu de l’intersection des tangentes à \(\mathscr{C}\) en \(P\) et \(Q\).
[geo.diff/ex0496] Montrer que si une courbe est telle qu’en chaque point, l’angle entre le rayon vecteur et la tangente est constant, alors c’est une spirale logarithmique \(r=ae^{c\theta}\).
[geo.diff/ex0496]
[oraux/ex1459] mines 2004 On note \(\Gamma\) la courbe d’équation polaire \(\rho=1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\).
[oraux/ex1459]
Tracer \(\Gamma\).
On note \(A\) le point de coordonnées polaires \(\rho=2\) et \(\theta=0\). Une droite variable passe par \(O\) et recoupe \(\Gamma\) en deux points \(P\) et \(Q\).
Déterminer le lieu du centre de gravité du triangle \(APQ\).
Déterminer le lieu de l’intersection des tangentes à \(\Gamma\) en \(P\) et \(Q\).
[oraux/ex1697] ccp PSI 2009 Dans le plan euclidien, soient \(A\) et \(O\) deux points distincts et \(\mathscr{C}\) le cercle de centre \(O\) passant par \(A\). Déterminer le lieu de l’orthocentre du triangle \(OMA\) lorsque \(M\) parcourt \(\mathscr{C}\).
[oraux/ex1697]
[oraux/ex9446] centrale PSI 2013 Soient \(C\) un cercle de centre \(O\), \(A\) un point fixé de \(C\), et \(M\) un point décrivant \(C\). Déterminer le lieu décrit par le centre de gravité du triangle \(OAM\).
[oraux/ex9446]
Vous pouvez choisir d'afficher tous les résultats d'une requête de façon individuelle, ou en les regroupant par familles d'exercices