[geo.diff/ex0144] Soient \(a\in\mathbf{R}_+^*\), \((C_1)\) : \(\rho=a\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits2\theta\), \((C_2)\) : \(\rho=a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta\). On note \(A\) le point de \((C_1)\cap(C_2)\) tel que \(0<\theta<\displaystyle{\pi\over4}\). Sous quel angle \((C_1)\) et \((C_2)\) se coupent-elles en \(A\) ?
[geo.diff/ex0144]
[equadiff/ex0553] Trouver les trajectoires orthogonales de la famille de courbes définie par : \[\rho=a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta.\]
[equadiff/ex0553]
[geo.diff/ex0201] On considère la famille des courbes \((\theta_k)\) ayant pour équation polaire : \[\rho^4-2a^2\rho^2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta= (k^4-1)a^4,\quad\hbox{où}\quad(a,k)\in(\mathbf{R}_+^*)^2.\]
[geo.diff/ex0201]
Quelle est l’équation cartésienne des courbes \((\theta_k)\) ?
Quelles sont les symétries communes à ces courbes ?
Montrer qu’il existe sur \((Ox)\) deux points fixes \(F\) et \(F\,'\) tels que \(MF\cdot MF\,'\) reste constant quand \(M\) décrit chacune des courbes \((\theta_k)\).
Préciser l’ensemble des points des courbes \(\theta_k\), où la tangente est parallèle à l’axe \(Ox\). Indiquer les points des courbes \((\theta_k)\) situés sur l’un ou l’autre axe et donner l’allure des différentes courbes de la famille.
[geo.diff/ex0437] Trouver tous les points d’intersection des courbes \(r=1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\) et \(r=1-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\).
[geo.diff/ex0437]
[equadiff/ex0546] Trouver l’équation de la courbe pour laquelle la sous-tangente est égale à la sous-normale polaire.
[equadiff/ex0546]
Vous pouvez choisir le type d'affichage de la liste des résultats : tableau ou liste