[geo.diff/ex0146]
Tracer \((C)\) : \(\rho=\displaystyle{1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3\displaystyle{\theta\over3}}\).
Une droite \((D_\theta)\), passant par \(O\) et d’angle polaire \(\theta\), coupe \((C)\) en trois points. Montrer que les tangentes à \((C)\) en ces trois points forment un triangle équilatéral.
[geo.diff/ex0441] Trouver les points d’intersection des courbes \(r=1\) et \(r=-1\).
[geo.diff/ex0441]
[equadiff/ex0536] Déterminer les trajectoires orthogonales de la famille de cardioïdes : \[\rho=C(1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta).\]
[equadiff/ex0536]
[geo.diff/ex0145]
Tracer \((C)\) : \(\rho=-1+\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\displaystyle{\theta\over2}\).
Une droite variable \((D)\) passant par \(O\) coupe \((C)\) en \(M_1\) et \(M_2\). Déterminer le lieu \(I\) du milieu de \(M_1M_2\).
[oraux/ex1579] centrale PC 2006 Dans le plan affine euclidien orienté rapporté à un repère orthonormé direct \((0,\vec\imath,\vec\jmath)\), on considère le point \(A(a,0)\) où \(a>0\) est fixé. On considère le cercle \((C)\) centré en un point \(P\) de \(Oy\) et qui passe par \(O\). La droite \((AP)\) coupe le cercle en deux points \(M\) et \(N\).
[oraux/ex1579]
Équation paramétrique de \((\Gamma)\), courbe décrite par \(M\) et \(N\) lorsque \(P\) se déplace sur \((Oy)\) ?
Paramétrer \((\Gamma)\) en polaires.
Le clic droit sur un énoncé ou sur une référence d'exercice permet d'examiner cet exercice sur une page dédiée