[geo.diff/ex0441] Trouver les points d’intersection des courbes \(r=1\) et \(r=-1\).
[geo.diff/ex0441]
[oraux/ex4401] centrale PC 2011 (avec Maple)
[oraux/ex4401]
Maple
Soient \(f:r\mapsto\displaystyle{r^3-3r\over r+1}\) et \(\mathscr{C}\) la courbe d’équation \(\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta=f(r)\).
Étudier \(f\). En déduire l’intervalle « utile » pour l’étude de \(\mathscr{C}\).
Soit \(g:r\mapsto\mathop{\mathchoice{\hbox{arcsin}}{\hbox{arcsin}}{\mathrm{arcsin}}{\mathrm{arcsin}}}\nolimits(f(r))\). Étudier \(g\) et tracer son graphe.
Donner les équations des tangentes ou demi-tangentes à \(\mathscr{C}\) aux points où \(\mathscr{C}\) coupe les axes.
Étudier les points doubles et tracer \(\mathscr{C}\).
[geo.diff/ex0436] Trouver la plus grande valeur de \(y\) sur la cardioïde \(r=2(1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\).
[geo.diff/ex0436]
[concours/ex2130] ccp, tpe, int, ivp MP 1999 Soit \(Oxy\) un repère orthonormal du plan. Déterminer les arcs \(\Gamma\), \(C^1\), réguliers, tels que la symétrique de la tangente en tout point \(M\) de \(\Gamma\) par rapport à \(OM\) soit parallèle à \(Ox\).
[concours/ex2130]
[geo.diff/ex0146]
Tracer \((C)\) : \(\rho=\displaystyle{1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3\displaystyle{\theta\over3}}\).
Une droite \((D_\theta)\), passant par \(O\) et d’angle polaire \(\theta\), coupe \((C)\) en trois points. Montrer que les tangentes à \((C)\) en ces trois points forment un triangle équilatéral.
[equadiff/ex0532] L’aire du secteur délimité par un arc de courbe et les rayons vecteurs aux extrémités de l’arc est égale à la moitié de la longueur de l’arc. Trouver la courbe.
[equadiff/ex0532]
[equadiff/ex0340] Trouver l’équation différentielle de la famille de cardioïdes : \(\rho=a(1-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\), où \(a\) est une constante arbitraire.
[equadiff/ex0340]
[equadiff/ex0536] Déterminer les trajectoires orthogonales de la famille de cardioïdes : \[\rho=C(1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta).\]
[equadiff/ex0536]
[equadiff/ex0533] Trouver la courbe pour laquelle la portion de tangente comprise entre le point de contact et le pied de la perpendiculaire à la tangente issue du pôle est le tiers du rayon vecteur au point de contact.
[equadiff/ex0533]
[concours/ex0289] mines MP 1996 On considère le plan affine euclidien rapporté à un repère orthonormé et les points \(A\), \(B\), \(C\), \(D\) de coordonnées respectives \((1,0)\), \((0,1)\), \((-1,0)\), \((0,-1)\). Étudier l’ensemble des points \(M\) du plan tels que \(AM.BM.CM.DM=1\).
[concours/ex0289]
[geo.diff/ex0437] Trouver tous les points d’intersection des courbes \(r=1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\) et \(r=1-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\).
[geo.diff/ex0437]
[equadiff/ex0554] Trouver les trajectoires orthogonales de la famille de courbes définie par : \[\rho=a(\mathop{\mathchoice{\hbox{sec}}{\hbox{sec}}{\mathrm{sec}}{\mathrm{sec}}}\nolimits\theta+\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\theta).\]
[equadiff/ex0554]
[concours/ex1549] centrale MP 1998 Déterminer les courbes définies en polaires par \(\rho=f(\theta)\) telles que \(2V+\theta=0\) (où \(V\) désigne l’angle du vecteur tangent avec le rayon vecteur).
[concours/ex1549]
[geo.diff/ex0143] Pour \((a,b,n)\in\mathbf{R}\times\mathbf{R}\times(\mathbf{N}\setminus\{0,1\})\), montrer que les points d’inflexion de la courbe d’équation polaire : \[\rho={1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits n\theta+a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta+b\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\] sont alignés.
[geo.diff/ex0143]
[concours/ex0553] tpe, int, ivp MP 1996
[concours/ex0553]
Étudier les courbes planes telles que l’angle de la tangente avec l’axe polaire est égal à \(n\) fois l’angle polaire.
Représenter ces courbes pour \(n\) entier, \(1\leqslant n\leqslant 4\).
[geo.diff/ex0490] Trouver les points d’intersection des courbes \(r=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\) et \(r=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\).
[geo.diff/ex0490]
[oraux/ex5882] ccp PSI 2012 Un point \(P\) parcourt le cercle de centre \(O\) et de rayon \(OA\). Déterminer la position du point de contact entre la droite \((OP)\) et le cercle inscrit dans le triangle \(OAP\), puis l’aire de la surface délimitée par ces points.
[oraux/ex5882]
[geo.diff/ex0440] Trouver les points d’intersection des courbes \(r^2=4\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta\) et \(r^2=4\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits2\theta\).
[geo.diff/ex0440]
[geo.diff/ex0031] On considère un arc \(\Gamma\) de classe \(C^1\) de la forme \(\rho=\rho(\theta)\) et on suppose que \(\rho\) et \(\rho'\) ne s’annulent pas. Au point \(M\) de paramètre \(\theta\), la tangente et la normale à \(\Gamma\) coupent respectivement l’axe \(OY\) du repère mobile aux points \(T\) et \(N\).
[geo.diff/ex0031]
Calculer \(\overline{OT}\) et \(\overline{ON}\).
Déterminer les arcs tels que \(\overline{ON}\) soit constant, puis ceux tels que \(\overline{OT}\) soit constant.
[concours/ex4293] centrale M 1990 Soit \(C\) un cercle de centre \(O\) dans un plan euclidien, \(A\) un point fixe du cercle, \(P\) et \(Q\) deux points variables du cercle tels que : \[\bigl(\mathchoice{\overrightarrow{OA}}{\overrightarrow{OA}}{\scriptstyle \overrightarrow{\scriptstyle OA}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle OA}},\mathchoice{\overrightarrow{OP}}{\overrightarrow{OP}}{\scriptstyle \overrightarrow{\scriptstyle OP}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle OP}}\bigr)=2\varphi, \qquad\bigl(\mathchoice{\overrightarrow{OA}}{\overrightarrow{OA}}{\scriptstyle \overrightarrow{\scriptstyle OA}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle OA}},\mathchoice{\overrightarrow{OQ}}{\overrightarrow{OQ}}{\scriptstyle \overrightarrow{\scriptstyle OQ}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle OQ}}\bigr)=-\varphi\quad\hbox{($\varphi$ variable).}\] déterminer l’équation polaire du lieu du milieu \(M\) de \([P,Q]\). Tracé.
[concours/ex4293]
Vous pouvez choisir la typographie des énoncés : HTML (MathJax, plus joli) ou sous forme d'image (GIF, plus rapide)