[concours/ex0986] centrale MP 1997 Une cardioïde roule sans glisser sur une droite. Trouver la trajectoire de son point de rebroussement.
[concours/ex0986]
[geo.diff/ex0089]
Soit \(a\in\mathbf{R}_+^*\). Tracer la courbe \(C\) de représentation paramétrique : \[\left\{\begin{array}{rcl} x&=& a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3t\\ y&=& a\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^3t,\end{array}\right.\] appelée astroïde.
Déterminer et tracer la courbe orthoptique de \(C\), c’est-à-dire l’ensemble des points d’où l’on peut mener (au moins) deux tangentes à \(C\) orthogonales.
[geo.diff/ex0142]
Construire \[(C)\ :\ \rho={\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\over\theta}.\]
Une droite \((\Delta)\) passant par \(O\) coupe \((C)\) en une infinité de points. Montrer que les tangentes à \((C)\) en ces points passent toutes par un point fixe.
[geo.diff/ex0038] Soit la courbe \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\over\theta}\).
[geo.diff/ex0038]
On considère une droite passant par \(O\). Montrer que les tangentes à \(\Gamma\) aux points de \(\Gamma\) situés sur \(\Delta\) passent par un même point \(P\). Ensemble décrit par \(P\) lorsque \(\Delta\) varie ?
[equadiff/ex0536] Déterminer les trajectoires orthogonales de la famille de cardioïdes : \[\rho=C(1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta).\]
[equadiff/ex0536]
[concours/ex0553] tpe, int, ivp MP 1996
[concours/ex0553]
Étudier les courbes planes telles que l’angle de la tangente avec l’axe polaire est égal à \(n\) fois l’angle polaire.
Représenter ces courbes pour \(n\) entier, \(1\leqslant n\leqslant 4\).
[oraux/ex1687] centrale PC 2009 Soit \(\Gamma\) la courbe d’équation polaire \(\rho(\theta)=\displaystyle{2\over2+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\). Déterminer les axes de symétrie de la courbe.
[oraux/ex1687]
[geo.diff/ex0143] Pour \((a,b,n)\in\mathbf{R}\times\mathbf{R}\times(\mathbf{N}\setminus\{0,1\})\), montrer que les points d’inflexion de la courbe d’équation polaire : \[\rho={1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits n\theta+a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta+b\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\] sont alignés.
[geo.diff/ex0143]
[concours/ex0289] mines MP 1996 On considère le plan affine euclidien rapporté à un repère orthonormé et les points \(A\), \(B\), \(C\), \(D\) de coordonnées respectives \((1,0)\), \((0,1)\), \((-1,0)\), \((0,-1)\). Étudier l’ensemble des points \(M\) du plan tels que \(AM.BM.CM.DM=1\).
[concours/ex0289]
[geo.diff/ex0437] Trouver tous les points d’intersection des courbes \(r=1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\) et \(r=1-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\).
[geo.diff/ex0437]
[geo.diff/ex0441] Trouver les points d’intersection des courbes \(r=1\) et \(r=-1\).
[geo.diff/ex0441]
[oraux/ex1610] mines PC 2008 Soient \(\mathscr{C}\) un cercle de centre \(O\) et \(A\in\mathscr{C}\). Si \(M\in\mathscr{C}\), soit \(P\) la projection orthogonale de \(A\) sur la tangente en \(M\) à \(\mathscr{C}\). Déterminer le lieu des points \(P\) quand \(M\) parcourt \(\mathscr{C}\).
[oraux/ex1610]
[equadiff/ex0533] Trouver la courbe pour laquelle la portion de tangente comprise entre le point de contact et le pied de la perpendiculaire à la tangente issue du pôle est le tiers du rayon vecteur au point de contact.
[equadiff/ex0533]
[oraux/ex5882] ccp PSI 2012 Un point \(P\) parcourt le cercle de centre \(O\) et de rayon \(OA\). Déterminer la position du point de contact entre la droite \((OP)\) et le cercle inscrit dans le triangle \(OAP\), puis l’aire de la surface délimitée par ces points.
[oraux/ex5882]
[equadiff/ex0554] Trouver les trajectoires orthogonales de la famille de courbes définie par : \[\rho=a(\mathop{\mathchoice{\hbox{sec}}{\hbox{sec}}{\mathrm{sec}}{\mathrm{sec}}}\nolimits\theta+\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\theta).\]
[equadiff/ex0554]
[equadiff/ex0546] Trouver l’équation de la courbe pour laquelle la sous-tangente est égale à la sous-normale polaire.
[equadiff/ex0546]
[equadiff/ex0553] Trouver les trajectoires orthogonales de la famille de courbes définie par : \[\rho=a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta.\]
[equadiff/ex0553]
[concours/ex2130] ccp, tpe, int, ivp MP 1999 Soit \(Oxy\) un repère orthonormal du plan. Déterminer les arcs \(\Gamma\), \(C^1\), réguliers, tels que la symétrique de la tangente en tout point \(M\) de \(\Gamma\) par rapport à \(OM\) soit parallèle à \(Ox\).
[concours/ex2130]
[geo.diff/ex0146]
Tracer \((C)\) : \(\rho=\displaystyle{1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3\displaystyle{\theta\over3}}\).
Une droite \((D_\theta)\), passant par \(O\) et d’angle polaire \(\theta\), coupe \((C)\) en trois points. Montrer que les tangentes à \((C)\) en ces trois points forment un triangle équilatéral.
[geo.diff/ex0031] On considère un arc \(\Gamma\) de classe \(C^1\) de la forme \(\rho=\rho(\theta)\) et on suppose que \(\rho\) et \(\rho'\) ne s’annulent pas. Au point \(M\) de paramètre \(\theta\), la tangente et la normale à \(\Gamma\) coupent respectivement l’axe \(OY\) du repère mobile aux points \(T\) et \(N\).
[geo.diff/ex0031]
Calculer \(\overline{OT}\) et \(\overline{ON}\).
Déterminer les arcs tels que \(\overline{ON}\) soit constant, puis ceux tels que \(\overline{OT}\) soit constant.
Vous pouvez choisir la typographie des énoncés : HTML (MathJax, plus joli) ou sous forme d'image (GIF, plus rapide)