[oraux/ex1738] centrale PC 2010 On se place dans le plan euclidien \(\mathbf{R}^2\). Soient \(a>0\), \(A(a,0)\) et \(B(-a,0)\). Déterminer l’ensemble \(\mathscr{C}_a\) des \(M\in\mathbf{R}^2\) tels que : \(MA\times MB=a^2\). Donner une représentation polaire de \(\mathscr{C}_a\) ; tracer la courbe.
[oraux/ex1738]
[oraux/ex1698] ccp PSI 2009 Dans le plan euclidien usuel, soit \(A(-1,0)\) et \(B(1,0)\). En utilisant les coordonnées polaires, trouver l’ensemble \(\Gamma\) des points \(M\) tels que \(MA\times MB=1\). Calculer l’aire intérieure à \(\Gamma\).
[oraux/ex1698]
[oraux/ex9446] centrale PSI 2013 Soient \(C\) un cercle de centre \(O\), \(A\) un point fixé de \(C\), et \(M\) un point décrivant \(C\). Déterminer le lieu décrit par le centre de gravité du triangle \(OAM\).
[oraux/ex9446]
[oraux/ex1459] mines 2004 On note \(\Gamma\) la courbe d’équation polaire \(\rho=1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\).
[oraux/ex1459]
Tracer \(\Gamma\).
On note \(A\) le point de coordonnées polaires \(\rho=2\) et \(\theta=0\). Une droite variable passe par \(O\) et recoupe \(\Gamma\) en deux points \(P\) et \(Q\).
Déterminer le lieu du centre de gravité du triangle \(APQ\).
Déterminer le lieu de l’intersection des tangentes à \(\Gamma\) en \(P\) et \(Q\).
[geo.diff/ex0030] Soit \(\Gamma\) la courbe \(\rho=ae^{m\theta}\), avec \(a>0\), \(m\neq0\).
[geo.diff/ex0030]
Faire une étude rapide de \(\Gamma\). Montrer que \(V\), mesure de l’angle orienté entre \(\vec u(\theta)\) et le vecteur tangent, est constant modulo \(2\pi\).
Réciproquement, déterminer les courbes \(\rho=\rho(\theta)\) de classe \(C^1\) ne passant pas par \(O\) telles que \(V\) soit constant.
Que peut-on dire de l’image de \(\Gamma\) par une similitude directe ? Déterminer les similitudes directes \(s\) telles que \(s(\Gamma)=\Gamma\).
[oraux/ex1717] mines PSI 2010 Un point \(M\) décrit le cercle \(\mathscr{C}\) de centre \(O(0,0)\) passant par \(A(a,0)\). Déterminer le lieu des centres de gravité, puis le lieu des orthocentres, du triangle \(OMA\).
[oraux/ex1717]
[geo.diff/ex0489] Montrer qu’une courbe telle que l’angle \(\psi\) entre le rayon vecteur et la tangente est égal à la moitié de l’angle \(\theta\) entre le rayon vecteur et l’axe des abscisses, est nécessairement une cardioïde \(r=a(1-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\).
[geo.diff/ex0489]
[geo.diff/ex0093] Tracer la courbe \(C\) suivante, appelée spirale logarithmique, définie en polaires par : \[\rho=ae^{\lambda\theta}, \quad\hbox{où}\quad (a\lambda)\in\mathbf{R}_+^*\times\mathbf{R}.\]
[geo.diff/ex0093]
[concours/ex2530] centrale M 1995 Soit \(\mathscr{C}\) la courbe d’équation polaire : \[\rho=a(1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta),\quad\hbox{avec }a>0.\]
[concours/ex2530]
Montrer que si l’on choisit une direction de droite \(\mathchoice{\overrightarrow{D}}{\overrightarrow{D}}{\scriptstyle \overrightarrow{\scriptstyle D}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle D}}\), il existe trois points \(M_1\), \(M_2\) et \(M_3\) de \(\mathscr{C}\) en lesquels la tangente a pour direction \(\mathchoice{\overrightarrow{D}}{\overrightarrow{D}}{\scriptstyle \overrightarrow{\scriptstyle D}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle D}}\).
Lieu de l’isobarycentre de \(M_1\), \(M_2\), \(M_3\) quand la direction de \(\mathchoice{\overrightarrow{D}}{\overrightarrow{D}}{\scriptstyle \overrightarrow{\scriptstyle D}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle D}}\) varie.
Montrer que l’aire du triangle \(M_1M_2M_3\) est indépendante de la direction choisie.
[concours/ex2048] centrale MP 1999 Soit \(\mathscr{C}\) la courbe d’équation \(\rho=1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\). Une droite passant par l’origine \(O\) recoupe \(\mathscr{C}\) en \(P\) et \(Q\).
[concours/ex2048]
Trouver le lieu de l’isobarycentre de \(P\), \(Q\) et \(A(2,0)\).
Lieu de l’intersection des tangentes à \(\mathscr{C}\) en \(P\) et \(Q\).
[equadiff/ex0545] Trouver l’équation de la courbe pour laquelle l’angle entre le rayon vecteur et la tangente est égal à la moitié de l’angle entre le rayon vecteur et l’axe \(Ox\).
[equadiff/ex0545]
[geo.diff/ex0496] Montrer que si une courbe est telle qu’en chaque point, l’angle entre le rayon vecteur et la tangente est constant, alors c’est une spirale logarithmique \(r=ae^{c\theta}\).
[geo.diff/ex0496]
[concours/ex3786] centrale M 1992 Trouver le lieu des points d’intersection des tangentes à une cardioïde menée de deux points \(M\) et \(N\) tels que \(M\), \(O\) et \(N\) soient alignés.
[concours/ex3786]
[geo.diff/ex0279]
Tracer la courbe d’équation polaire \(\rho=a(1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\).
Calculer la longueur de cette courbe puis l’aire délimitée par cette courbe.
Montrer que pour tout \(m\in\mathbf{R}\), il existe trois points sur la courbe dont la tangente a pour pente \(m\).
Déterminer l’isobarycentre de ces trois points.
[geo.diff/ex0034] Soit \(\Gamma\) la cardioïde d’équation \(\rho=a(1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\), avec \(a>0\).
[geo.diff/ex0034]
Faire une étude rapide de \(\Gamma\). On précisera l’angle \(V\) entre \(\vec u(\theta)\) et le vecteur tangent en \(\theta\).
Montrer que \(\Gamma\) admet trois tangentes ayant une direction donnée. Déterminer l’isobarycentre des points de contact.
Que peut-on dire des tangentes à \(\Gamma\) en deux points alignés avec \(O\) ? Donner des équations normales de ces deux tangentes et déterminer leur point d’intersection. Quel ensemble décrit-il ?
[equadiff/ex0531] Trouver la courbe satisfaisant à la propriété suivante : en tout point l’angle que fait le rayon vecteur avec la tangente est égal au tiers de l’angle de la tangente et de l’axe \(Ox\).
[equadiff/ex0531]
[oraux/ex1697] ccp PSI 2009 Dans le plan euclidien, soient \(A\) et \(O\) deux points distincts et \(\mathscr{C}\) le cercle de centre \(O\) passant par \(A\). Déterminer le lieu de l’orthocentre du triangle \(OMA\) lorsque \(M\) parcourt \(\mathscr{C}\).
[oraux/ex1697]
[geo.diff/ex0280] Soit \((A,B,C)\) un triangle équilatéral du plan, soit \(O\) l’isobarycentre de ce triangle, on suppose que la distance \(OA\) est égale à \(1\), déterminer l’ensemble des points \(M\) du plan tels que \(MA\cdot MB\cdot MC=1\).
[geo.diff/ex0280]
[geo.diff/ex0033] Soit \(\Gamma\) la courbe décrite par \(M(t)\) : \(x=a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3t\), \(y=a\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^3t\) (\(a>0\)). Le but de cet exercice est de déterminer une équation polaire de l’ensemble \((R)\) des points d’où on peut mener deux tangentes à \(\Gamma\) orthogonales.
[geo.diff/ex0033]
Trouver une équation normale de la tangente \(\Delta(t)\) en \(t\) à \(\Gamma\). Préciser modulo \(\pi\) l’angle orienté \(\alpha(t)\) entre \(Ox\) et \(\Delta(t)\). A quelle condition \(\Delta(t)\) et \(\Delta(u)\) sont-elles orthogonales ?
Calculer l’affixe du point d’intersection \(N(t)\) de \(\Delta(t)\) et de \(\Delta(t-\pi/2)\). En déduire une équation polaire de \((R)\). Représenter \(\Gamma\) et \((R)\).
On pose \(t_0=\displaystyle{1\over2}\mathop{\mathchoice{\hbox{arctan}}{\hbox{arctan}}{\mathrm{arctan}}{\mathrm{arctan}}}\nolimits 2\). Montrer que les réels \(t\) tels que \(N(t)=M(t)\) se déduisent simplement de \(t_0\). Montrer qu’en un tel point, \(\Gamma\) et \((R)\) sont tangentes.
[geo.diff/ex0089]
Soit \(a\in\mathbf{R}_+^*\). Tracer la courbe \(C\) de représentation paramétrique : \[\left\{\begin{array}{rcl} x&=& a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3t\\ y&=& a\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^3t,\end{array}\right.\] appelée astroïde.
Déterminer et tracer la courbe orthoptique de \(C\), c’est-à-dire l’ensemble des points d’où l’on peut mener (au moins) deux tangentes à \(C\) orthogonales.
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez une référence d'exercice dans un tableau, voire ne rien afficher