[geo.diff/ex0031] On considère un arc \(\Gamma\) de classe \(C^1\) de la forme \(\rho=\rho(\theta)\) et on suppose que \(\rho\) et \(\rho'\) ne s’annulent pas. Au point \(M\) de paramètre \(\theta\), la tangente et la normale à \(\Gamma\) coupent respectivement l’axe \(OY\) du repère mobile aux points \(T\) et \(N\).
[geo.diff/ex0031]
Calculer \(\overline{OT}\) et \(\overline{ON}\).
Déterminer les arcs tels que \(\overline{ON}\) soit constant, puis ceux tels que \(\overline{OT}\) soit constant.
[oraux/ex1665] mines MP 2009 On considère la cardioïde d’équation : \(\rho=a(1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\). Calculer la distance de l’origine à la normale en un point de la courbe.
[oraux/ex1665]
[equadiff/ex0553] Trouver les trajectoires orthogonales de la famille de courbes définie par : \[\rho=a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta.\]
[equadiff/ex0553]
[oraux/ex1713] mines MP 2010 Étudier la courbe \(\mathscr{C}\) d’équation polaire \(\rho=a(a-2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\), où \(a>0\). Une droite \(\mathscr{D}\) passant par l’origine coupe \(\mathbf{C}\) en deux points \(P\) et \(Q\). On note \(I\) le milieu de \([PQ]\). Déterminer le lieu de \(I\) lorsque \(\mathscr{D}\) varie.
[oraux/ex1713]
[geo.diff/ex0145]
Tracer \((C)\) : \(\rho=-1+\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\displaystyle{\theta\over2}\).
Une droite variable \((D)\) passant par \(O\) coupe \((C)\) en \(M_1\) et \(M_2\). Déterminer le lieu \(I\) du milieu de \(M_1M_2\).
[oraux/ex1579] centrale PC 2006 Dans le plan affine euclidien orienté rapporté à un repère orthonormé direct \((0,\vec\imath,\vec\jmath)\), on considère le point \(A(a,0)\) où \(a>0\) est fixé. On considère le cercle \((C)\) centré en un point \(P\) de \(Oy\) et qui passe par \(O\). La droite \((AP)\) coupe le cercle en deux points \(M\) et \(N\).
[oraux/ex1579]
Équation paramétrique de \((\Gamma)\), courbe décrite par \(M\) et \(N\) lorsque \(P\) se déplace sur \((Oy)\) ?
Paramétrer \((\Gamma)\) en polaires.
[equadiff/ex0546] Trouver l’équation de la courbe pour laquelle la sous-tangente est égale à la sous-normale polaire.
[equadiff/ex0546]
[geo.diff/ex0440] Trouver les points d’intersection des courbes \(r^2=4\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta\) et \(r^2=4\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits2\theta\).
[geo.diff/ex0440]
[geo.diff/ex0490] Trouver les points d’intersection des courbes \(r=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\) et \(r=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\).
[geo.diff/ex0490]
[oraux/ex4401] centrale PC 2011 (avec Maple)
[oraux/ex4401]
Maple
Soient \(f:r\mapsto\displaystyle{r^3-3r\over r+1}\) et \(\mathscr{C}\) la courbe d’équation \(\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta=f(r)\).
Étudier \(f\). En déduire l’intervalle « utile » pour l’étude de \(\mathscr{C}\).
Soit \(g:r\mapsto\mathop{\mathchoice{\hbox{arcsin}}{\hbox{arcsin}}{\mathrm{arcsin}}{\mathrm{arcsin}}}\nolimits(f(r))\). Étudier \(g\) et tracer son graphe.
Donner les équations des tangentes ou demi-tangentes à \(\mathscr{C}\) aux points où \(\mathscr{C}\) coupe les axes.
Étudier les points doubles et tracer \(\mathscr{C}\).
Sur les pages de résultats et selon les options d'affichage choisies, vous pouvez déployer les familles des exercices affichés