[geo.diff/ex0436] Trouver la plus grande valeur de \(y\) sur la cardioïde \(r=2(1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\).
[geo.diff/ex0436]
[concours/ex0289] mines MP 1996 On considère le plan affine euclidien rapporté à un repère orthonormé et les points \(A\), \(B\), \(C\), \(D\) de coordonnées respectives \((1,0)\), \((0,1)\), \((-1,0)\), \((0,-1)\). Étudier l’ensemble des points \(M\) du plan tels que \(AM.BM.CM.DM=1\).
[concours/ex0289]
[geo.diff/ex0031] On considère un arc \(\Gamma\) de classe \(C^1\) de la forme \(\rho=\rho(\theta)\) et on suppose que \(\rho\) et \(\rho'\) ne s’annulent pas. Au point \(M\) de paramètre \(\theta\), la tangente et la normale à \(\Gamma\) coupent respectivement l’axe \(OY\) du repère mobile aux points \(T\) et \(N\).
[geo.diff/ex0031]
Calculer \(\overline{OT}\) et \(\overline{ON}\).
Déterminer les arcs tels que \(\overline{ON}\) soit constant, puis ceux tels que \(\overline{OT}\) soit constant.
[equadiff/ex0546] Trouver l’équation de la courbe pour laquelle la sous-tangente est égale à la sous-normale polaire.
[equadiff/ex0546]
[equadiff/ex0536] Déterminer les trajectoires orthogonales de la famille de cardioïdes : \[\rho=C(1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta).\]
[equadiff/ex0536]
Vous pouvez choisir d'afficher ou non des icônes pour savoir si les exercices possèdent une solution