[geo.diff/ex0490] Trouver les points d’intersection des courbes \(r=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\) et \(r=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\).
[geo.diff/ex0490]
[geo.diff/ex0439] Trouver les points d’intersection des courbes \(r=\sqrt2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\) et \(r^2=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta\).
[geo.diff/ex0439]
[geo.diff/ex0201] On considère la famille des courbes \((\theta_k)\) ayant pour équation polaire : \[\rho^4-2a^2\rho^2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta= (k^4-1)a^4,\quad\hbox{où}\quad(a,k)\in(\mathbf{R}_+^*)^2.\]
[geo.diff/ex0201]
Quelle est l’équation cartésienne des courbes \((\theta_k)\) ?
Quelles sont les symétries communes à ces courbes ?
Montrer qu’il existe sur \((Ox)\) deux points fixes \(F\) et \(F\,'\) tels que \(MF\cdot MF\,'\) reste constant quand \(M\) décrit chacune des courbes \((\theta_k)\).
Préciser l’ensemble des points des courbes \(\theta_k\), où la tangente est parallèle à l’axe \(Ox\). Indiquer les points des courbes \((\theta_k)\) situés sur l’un ou l’autre axe et donner l’allure des différentes courbes de la famille.
[oraux/ex4401] centrale PC 2011 (avec Maple)
[oraux/ex4401]
Maple
Soient \(f:r\mapsto\displaystyle{r^3-3r\over r+1}\) et \(\mathscr{C}\) la courbe d’équation \(\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta=f(r)\).
Étudier \(f\). En déduire l’intervalle « utile » pour l’étude de \(\mathscr{C}\).
Soit \(g:r\mapsto\mathop{\mathchoice{\hbox{arcsin}}{\hbox{arcsin}}{\mathrm{arcsin}}{\mathrm{arcsin}}}\nolimits(f(r))\). Étudier \(g\) et tracer son graphe.
Donner les équations des tangentes ou demi-tangentes à \(\mathscr{C}\) aux points où \(\mathscr{C}\) coupe les axes.
Étudier les points doubles et tracer \(\mathscr{C}\).
[equadiff/ex0544] Trouver l’équation de la courbe pour laquelle la sous-normale polaire a pour longueur deux fois la valeur du sinus de l’angle entre le rayon vecteur et l’axe \(Ox\).
[equadiff/ex0544]
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'une année en particulier