[oraux/ex1738] centrale PC 2010 On se place dans le plan euclidien \(\mathbf{R}^2\). Soient \(a>0\), \(A(a,0)\) et \(B(-a,0)\). Déterminer l’ensemble \(\mathscr{C}_a\) des \(M\in\mathbf{R}^2\) tels que : \(MA\times MB=a^2\). Donner une représentation polaire de \(\mathscr{C}_a\) ; tracer la courbe.
[oraux/ex1738]
[oraux/ex1698] ccp PSI 2009 Dans le plan euclidien usuel, soit \(A(-1,0)\) et \(B(1,0)\). En utilisant les coordonnées polaires, trouver l’ensemble \(\Gamma\) des points \(M\) tels que \(MA\times MB=1\). Calculer l’aire intérieure à \(\Gamma\).
[oraux/ex1698]
[oraux/ex1717] mines PSI 2010 Un point \(M\) décrit le cercle \(\mathscr{C}\) de centre \(O(0,0)\) passant par \(A(a,0)\). Déterminer le lieu des centres de gravité, puis le lieu des orthocentres, du triangle \(OMA\).
[oraux/ex1717]
[oraux/ex1459] mines 2004 On note \(\Gamma\) la courbe d’équation polaire \(\rho=1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\).
[oraux/ex1459]
Tracer \(\Gamma\).
On note \(A\) le point de coordonnées polaires \(\rho=2\) et \(\theta=0\). Une droite variable passe par \(O\) et recoupe \(\Gamma\) en deux points \(P\) et \(Q\).
Déterminer le lieu du centre de gravité du triangle \(APQ\).
Déterminer le lieu de l’intersection des tangentes à \(\Gamma\) en \(P\) et \(Q\).
[geo.diff/ex0093] Tracer la courbe \(C\) suivante, appelée spirale logarithmique, définie en polaires par : \[\rho=ae^{\lambda\theta}, \quad\hbox{où}\quad (a\lambda)\in\mathbf{R}_+^*\times\mathbf{R}.\]
[geo.diff/ex0093]
Vous pouvez choisir la typographie des énoncés : HTML (MathJax, plus joli) ou sous forme d'image (GIF, plus rapide)