[oraux/ex1610] mines PC 2008 Soient \(\mathscr{C}\) un cercle de centre \(O\) et \(A\in\mathscr{C}\). Si \(M\in\mathscr{C}\), soit \(P\) la projection orthogonale de \(A\) sur la tangente en \(M\) à \(\mathscr{C}\). Déterminer le lieu des points \(P\) quand \(M\) parcourt \(\mathscr{C}\).
[oraux/ex1610]
[equadiff/ex0554] Trouver les trajectoires orthogonales de la famille de courbes définie par : \[\rho=a(\mathop{\mathchoice{\hbox{sec}}{\hbox{sec}}{\mathrm{sec}}{\mathrm{sec}}}\nolimits\theta+\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\theta).\]
[equadiff/ex0554]
[oraux/ex1579] centrale PC 2006 Dans le plan affine euclidien orienté rapporté à un repère orthonormé direct \((0,\vec\imath,\vec\jmath)\), on considère le point \(A(a,0)\) où \(a>0\) est fixé. On considère le cercle \((C)\) centré en un point \(P\) de \(Oy\) et qui passe par \(O\). La droite \((AP)\) coupe le cercle en deux points \(M\) et \(N\).
[oraux/ex1579]
Équation paramétrique de \((\Gamma)\), courbe décrite par \(M\) et \(N\) lorsque \(P\) se déplace sur \((Oy)\) ?
Paramétrer \((\Gamma)\) en polaires.
[oraux/ex3668] polytechnique MP 2011 On munit \(\mathbf{R}^2\) de sa structure euclidienne canonique. Soient \(A\) et \(B\) deux points de \(\mathbf{R}^2\), \(O\in[A,B]\), \(n=OA\), \(m=OB\), \(a\in\left]0,\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits\{n,m\}\right[\) et \(K\) le disque fermé de centre \(O\) et de rayon \(a\). Déterminer les points \(M\) de \(K\) tels que \(\displaystyle{n^2\over AM}+{m^2\over BM}\) soit minimal.
[oraux/ex3668]
[geo.diff/ex0144] Soient \(a\in\mathbf{R}_+^*\), \((C_1)\) : \(\rho=a\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits2\theta\), \((C_2)\) : \(\rho=a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta\). On note \(A\) le point de \((C_1)\cap(C_2)\) tel que \(0<\theta<\displaystyle{\pi\over4}\). Sous quel angle \((C_1)\) et \((C_2)\) se coupent-elles en \(A\) ?
[geo.diff/ex0144]
[concours/ex4293] centrale M 1990 Soit \(C\) un cercle de centre \(O\) dans un plan euclidien, \(A\) un point fixe du cercle, \(P\) et \(Q\) deux points variables du cercle tels que : \[\bigl(\mathchoice{\overrightarrow{OA}}{\overrightarrow{OA}}{\scriptstyle \overrightarrow{\scriptstyle OA}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle OA}},\mathchoice{\overrightarrow{OP}}{\overrightarrow{OP}}{\scriptstyle \overrightarrow{\scriptstyle OP}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle OP}}\bigr)=2\varphi, \qquad\bigl(\mathchoice{\overrightarrow{OA}}{\overrightarrow{OA}}{\scriptstyle \overrightarrow{\scriptstyle OA}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle OA}},\mathchoice{\overrightarrow{OQ}}{\overrightarrow{OQ}}{\scriptstyle \overrightarrow{\scriptstyle OQ}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle OQ}}\bigr)=-\varphi\quad\hbox{($\varphi$ variable).}\] déterminer l’équation polaire du lieu du milieu \(M\) de \([P,Q]\). Tracé.
[concours/ex4293]
[equadiff/ex0533] Trouver la courbe pour laquelle la portion de tangente comprise entre le point de contact et le pied de la perpendiculaire à la tangente issue du pôle est le tiers du rayon vecteur au point de contact.
[equadiff/ex0533]
[geo.diff/ex0437] Trouver tous les points d’intersection des courbes \(r=1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\) et \(r=1-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\).
[geo.diff/ex0437]
[geo.diff/ex0436] Trouver la plus grande valeur de \(y\) sur la cardioïde \(r=2(1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\).
[geo.diff/ex0436]
[equadiff/ex0340] Trouver l’équation différentielle de la famille de cardioïdes : \(\rho=a(1-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\), où \(a\) est une constante arbitraire.
[equadiff/ex0340]
[geo.diff/ex0143] Pour \((a,b,n)\in\mathbf{R}\times\mathbf{R}\times(\mathbf{N}\setminus\{0,1\})\), montrer que les points d’inflexion de la courbe d’équation polaire : \[\rho={1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits n\theta+a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta+b\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\] sont alignés.
[geo.diff/ex0143]
[geo.diff/ex0438] Trouver les points d’intersection des courbes \(r=4\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\) et \(r=4\sqrt3\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\).
[geo.diff/ex0438]
[equadiff/ex0536] Déterminer les trajectoires orthogonales de la famille de cardioïdes : \[\rho=C(1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta).\]
[equadiff/ex0536]
[oraux/ex5882] ccp PSI 2012 Un point \(P\) parcourt le cercle de centre \(O\) et de rayon \(OA\). Déterminer la position du point de contact entre la droite \((OP)\) et le cercle inscrit dans le triangle \(OAP\), puis l’aire de la surface délimitée par ces points.
[oraux/ex5882]
[oraux/ex1713] mines MP 2010 Étudier la courbe \(\mathscr{C}\) d’équation polaire \(\rho=a(a-2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\), où \(a>0\). Une droite \(\mathscr{D}\) passant par l’origine coupe \(\mathbf{C}\) en deux points \(P\) et \(Q\). On note \(I\) le milieu de \([PQ]\). Déterminer le lieu de \(I\) lorsque \(\mathscr{D}\) varie.
[oraux/ex1713]
[oraux/ex1687] centrale PC 2009 Soit \(\Gamma\) la courbe d’équation polaire \(\rho(\theta)=\displaystyle{2\over2+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\). Déterminer les axes de symétrie de la courbe.
[oraux/ex1687]
[oraux/ex1665] mines MP 2009 On considère la cardioïde d’équation : \(\rho=a(1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\). Calculer la distance de l’origine à la normale en un point de la courbe.
[oraux/ex1665]
[equadiff/ex0532] L’aire du secteur délimité par un arc de courbe et les rayons vecteurs aux extrémités de l’arc est égale à la moitié de la longueur de l’arc. Trouver la courbe.
[equadiff/ex0532]
[equadiff/ex0553] Trouver les trajectoires orthogonales de la famille de courbes définie par : \[\rho=a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta.\]
[equadiff/ex0553]
[concours/ex0289] mines MP 1996 On considère le plan affine euclidien rapporté à un repère orthonormé et les points \(A\), \(B\), \(C\), \(D\) de coordonnées respectives \((1,0)\), \((0,1)\), \((-1,0)\), \((0,-1)\). Étudier l’ensemble des points \(M\) du plan tels que \(AM.BM.CM.DM=1\).
[concours/ex0289]
Vous pouvez choisir d'afficher tous les résultats d'une requête de façon individuelle, ou en les regroupant par familles d'exercices