[oraux/ex1738] centrale PC 2010 On se place dans le plan euclidien \(\mathbf{R}^2\). Soient \(a>0\), \(A(a,0)\) et \(B(-a,0)\). Déterminer l’ensemble \(\mathscr{C}_a\) des \(M\in\mathbf{R}^2\) tels que : \(MA\times MB=a^2\). Donner une représentation polaire de \(\mathscr{C}_a\) ; tracer la courbe.
[oraux/ex1738]
[oraux/ex1698] ccp PSI 2009 Dans le plan euclidien usuel, soit \(A(-1,0)\) et \(B(1,0)\). En utilisant les coordonnées polaires, trouver l’ensemble \(\Gamma\) des points \(M\) tels que \(MA\times MB=1\). Calculer l’aire intérieure à \(\Gamma\).
[oraux/ex1698]
[geo.diff/ex0030] Soit \(\Gamma\) la courbe \(\rho=ae^{m\theta}\), avec \(a>0\), \(m\neq0\).
[geo.diff/ex0030]
Faire une étude rapide de \(\Gamma\). Montrer que \(V\), mesure de l’angle orienté entre \(\vec u(\theta)\) et le vecteur tangent, est constant modulo \(2\pi\).
Réciproquement, déterminer les courbes \(\rho=\rho(\theta)\) de classe \(C^1\) ne passant pas par \(O\) telles que \(V\) soit constant.
Que peut-on dire de l’image de \(\Gamma\) par une similitude directe ? Déterminer les similitudes directes \(s\) telles que \(s(\Gamma)=\Gamma\).
[geo.diff/ex0496] Montrer que si une courbe est telle qu’en chaque point, l’angle entre le rayon vecteur et la tangente est constant, alors c’est une spirale logarithmique \(r=ae^{c\theta}\).
[geo.diff/ex0496]
[equadiff/ex0531] Trouver la courbe satisfaisant à la propriété suivante : en tout point l’angle que fait le rayon vecteur avec la tangente est égal au tiers de l’angle de la tangente et de l’axe \(Ox\).
[equadiff/ex0531]
[oraux/ex1697] ccp PSI 2009 Dans le plan euclidien, soient \(A\) et \(O\) deux points distincts et \(\mathscr{C}\) le cercle de centre \(O\) passant par \(A\). Déterminer le lieu de l’orthocentre du triangle \(OMA\) lorsque \(M\) parcourt \(\mathscr{C}\).
[oraux/ex1697]
[geo.diff/ex0489] Montrer qu’une courbe telle que l’angle \(\psi\) entre le rayon vecteur et la tangente est égal à la moitié de l’angle \(\theta\) entre le rayon vecteur et l’axe des abscisses, est nécessairement une cardioïde \(r=a(1-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\).
[geo.diff/ex0489]
[geo.diff/ex0093] Tracer la courbe \(C\) suivante, appelée spirale logarithmique, définie en polaires par : \[\rho=ae^{\lambda\theta}, \quad\hbox{où}\quad (a\lambda)\in\mathbf{R}_+^*\times\mathbf{R}.\]
[geo.diff/ex0093]
[equadiff/ex0545] Trouver l’équation de la courbe pour laquelle l’angle entre le rayon vecteur et la tangente est égal à la moitié de l’angle entre le rayon vecteur et l’axe \(Ox\).
[equadiff/ex0545]
[concours/ex2530] centrale M 1995 Soit \(\mathscr{C}\) la courbe d’équation polaire : \[\rho=a(1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta),\quad\hbox{avec }a>0.\]
[concours/ex2530]
Montrer que si l’on choisit une direction de droite \(\mathchoice{\overrightarrow{D}}{\overrightarrow{D}}{\scriptstyle \overrightarrow{\scriptstyle D}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle D}}\), il existe trois points \(M_1\), \(M_2\) et \(M_3\) de \(\mathscr{C}\) en lesquels la tangente a pour direction \(\mathchoice{\overrightarrow{D}}{\overrightarrow{D}}{\scriptstyle \overrightarrow{\scriptstyle D}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle D}}\).
Lieu de l’isobarycentre de \(M_1\), \(M_2\), \(M_3\) quand la direction de \(\mathchoice{\overrightarrow{D}}{\overrightarrow{D}}{\scriptstyle \overrightarrow{\scriptstyle D}}{\scriptscriptstyle \overrightarrow{\scriptscriptstyle D}}\) varie.
Montrer que l’aire du triangle \(M_1M_2M_3\) est indépendante de la direction choisie.
Vous pouvez désactiver ou réduire la fréquence d'affichage de ces fenêtres d'astuces