[oraux/ex8696] ensam PSI 2016 Soient \(X_1\) et \(X_2\) deux variables aléatoires indépendantes suivant une loi géométrique de paramètre \(p\). On pose \(q=1-p\) et \(Y=|X_1-X_2|\).
[oraux/ex8696]
Calculer \(\mathbf{P}(Y=0)\). Soit \(n\in\mathbf{N}\). Montrer que \(\mathbf{P}(X_1-X_2=n)=\displaystyle{pq^n\over1+q}\). En déduire la loi de \(Y\).
Montrer que \(Y\) admet une espérance et la calculer.
Montrer que \(\mathbf{E}((X_1-X_2)^2)=2\mathbf{V}(X_1)\). En déduire que \(Y\) admet une variance et la calculer.
[planches/ex8157] mines MP 2022 Soient \(X\), \(Y\) deux variables indépendantes à valeurs dans \(\mathbf{N}\). On suppose que, pour tout \(k\in\mathbf{N}\), \(\mathbf{P}(Y=k)>0\), et que \(\mathbf{E}(Y)<\infty\). Pour \(n\in\mathbf{N}\), on définit la variable aléatoire \(Z_n\) par \(Z_n(\omega)=X(\omega)\) si \(Y(\omega)\leqslant n\) et \(Z_n(\omega)=Y(\omega)\) sinon. Montrer que la suite \(\mathbf{E}(Z_n)\) possède une valeur maximale pour au plus deux valeurs de \(n\).
[planches/ex8157]
[probas/ex0169] hec 1995 On considère un entier naturel \(n\) non nul, un réel \(p\) de \(\left]0,1\right[\) ; \(X\) est une variable aléatoire avec \(X\hookrightarrow\mathscr{B}(n,p)\).
[probas/ex0169]
Les valeurs prises par \(X\) sont affichées par un compteur défaillant ; lorsqu’il doit afficher 0, il affiche en fait au hasard un nombre compris entre 1 et \(n\) ; sinon il affiche le bon résultat.
Soit \(Y\) la variable aléatoire correspondant au numéro affiché par le compteur. Donner la loi de \(Y\) et \(E(Y)\).
[concours/ex6693] escp S 2008 Un vendeur de cycles vend des pédales de bicyclette qu’il se procure chez son grossiste par boîtes de deux ; toutes les boîtes sont supposées identiques et dans chaque boîte il y a une pédale droite et une pédale gauche.
[concours/ex6693]
Lorsqu’un client demande le remplacement de ses deux pédales de vélo, le commerçant lui vend une boîte complète et lui fait payer la somme de \(2r\) euros.
Lorsqu’un client demande le remplacement d’une seule des deux pédales, le commerçant décide de ne pas obliger le client à acheter une boîte complète, mais majore le prix de la pédale dans une proportion \(\alpha\), c’est-à-dire lui fait payer la somme de \((1 + \alpha)r\) euros.
Pour la simplicité de l’étude, on suppose que l’on sait que le nombre de pédales à poser séparément pendant la durée de l’étude vaut \(2n\), où \(n\) est un entier naturel non nul. On suppose que le vendeur ne dispose au départ que de boîtes complètes et en nombre suffisant.
Soit \(p\) la probabilité qu’une demande d’un client qui ne demande qu’une pédale corresponde à une pédale droite (\(p\) n’est pas nécessairement égal à \(1/2\)) et \(X\) le nombre de boîtes nécessaires à la satisfaction de ces \(2n\) demandes. (le commerçant n’ouvre une boîte que s’il ne dispose pas d’une boîte entamée lui permettant d’accéder à la demande du client)
Quelle est la loi de \(X\) ? On précisera l’ensemble des valeurs prises par \(X\).
Montrer que \(X\) peut s’écrire : \(X=a+\left|Y-b\right|\), où \(a\) et \(b\) sont des constantes qu’on précisera et \(Y\) une variable aléatoire qui suit une loi binomiale.
Donner l’expression l’espérance de \(E(X)\) en fonction de \(n\) et \(p\).
Dans la suite, on prendra la valeur \(p=1/2\).
Quelle majoration \(\alpha\) le marchand de cycles doit-il appliquer au prix de chaque pédale vendue séparément pour qu’en moyenne le prix de vente des \(2n\) pédales vendues séparément soit égal au prix de vente des \(X\) boîtes nécessaires vendues \(2r\) euros chacune.
La valeur \(\alpha\) trouvée dépend de \(n\) et on la note dorénavant \(\alpha_n\). Prouver que la suite \((\alpha_n)\) est décroissante. Donner un équivalent simple de \(\alpha_n\) et la limite de \(\alpha_n\) lorsque \(n\) tend vers \(+\infty\).
\([[\)On admettra la formule de Stirling : \(n\,!\sim\sqrt{2\pi n}\big(\displaystyle{n\over e}\big)^{n}\) \(]]\)
[planches/ex4250] escp B/L 2018 Toutes les variables aléatoires de cet exercice sont définies sur un espace probabilisé \((\Omega,\mathscr{A},\mathbf{P})\).
[planches/ex4250]
Une urne contient exclusivement des boules rouges et noires indiscernables au toucher.
La proportion de boules rouges est \(p\in\left]0,1\right[\). On effectue des tirages successifs d’une boule avec remise.
On commence par effectuer des tirages de boules jusqu’à obtention d’une boule rouge ; on note \(N\) le nombre de tirages qui ont été nécessaires pour obtenir cette première boule rouge.
On effectue ensuite \(N\) tirages successifs et on s’intéresse à \(X\) qui représente le nombre de boules rouges obtenues lors de ces \(N\) tirages.
Quelle est la loi de de la variable aléatoire \(N\) ?
Pour un entier \(n\geqslant 1\), quelle est la loi conditionnelle de \(X\) sachant \([N=n]\) ?
Déterminer la loi du couple \((N,X)\).
Déterminer la loi de \(X\). On pourra utiliser sans démonstration l’égalité : \[(*)\quad\forall k\in\mathbf{N},\quad\forall x\in\left]-1,1\right[,\quad{1\over(1-x)^{k+1}}=\sum\limits_{m=0}^{+ \infty}{m+k\choose k}x^m.\]
Soit un réel \(\lambda\in\left]0,1\right[\). On considère deux variables aléatoires \(U\) et \(V\) indépendantes, telles que \(U\) suit une loi de Bernouilli de paramètre \(\lambda\) et \(V\) suit une loi géométrique de paramètre \(\lambda\).
Déterminer la loi de la variable aléatoire \(UV\).
En déduire que \(X\) a même loi qu’un produit de deux variables aléatoires indépendantes, l’une suivant une loi de Bernoulli et l’autre une loi géométrique.
Exprimer \(\mathbf{E}(X)\) et \(\mathbf{V}(X)\) en fonction de \(\lambda\).
Vous pouvez choisir d'afficher tous les résultats d'une requête de façon individuelle, ou en les regroupant par familles d'exercices