[planches/ex5015] mines MP 2019 Soient \(p\in\left]0,1\right[\), \((X_k)_{k\geqslant 1}\) une suite i.i.d. de variables aléatoires de Bernoulli de paramètre \(p\). On pose \(L_1=\mathop{\mathchoice{\hbox{max}}{\hbox{max}}{\mathrm{max}}{\mathrm{max}}}\limits\{k\in\mathbf{N}^*\ ;\ X_1=X_2=\cdots=X_k\}\) si cet ensemble est fini, \(+\infty\) sinon.
[planches/ex5015]
Montrer que \(L_1\) est presque sûrement fini, donner sa loi, son espérance et sa variance.
Si \(L_1<+\infty\), soit \(L_2=\mathop{\mathchoice{\hbox{max}}{\hbox{max}}{\mathrm{max}}{\mathrm{max}}}\limits\{\ell\in\mathbf{N}^*\ ;\ X_{L_1+1}=X_{L_1+2}=\cdots=X_{L_1+\ell}\}\) si cet ensemble est fini, \(+\infty\) sinon. Montrer que \(L_2\) est presque sûrement fini, donner sa loi, son espérance et sa variance.
[examen/ex0791] imt PSI 2023 On considère une urne comportant une proportion \(p\) de boules blanches et \(q=1-p\) de boules noires. On effectue des tirages dans cette urne avec remise. On note \(X\) la variable aléatoire qui compte le nombre de boules successives de la même couleur lors d’une première série de lancers et \(Y\) la variable aléatoire qui compte le nombre de boules successives de la même couleur lors de la deuxième série de lancers. Si l’on obtient indéfiniment la même couleur, on notera \(X=+\infty\).
[examen/ex0791]
Exemple : BBBNNNNNB donne \(X=3\) et \(Y=5\).
Énoncer le théorème de continuité croissante.
En déduire que les événements \((X=+\infty)\) et \((Y=0)\) sont négligeables.
Déterminer la loi du couple \((X,Y)\).
[examen/ex0018] mines MP 2023 Soient \(X_1\), \(X_2\) deux variables aléatoires indépendantes qui suivent la loi géométrique de paramètre \(p\in\left]0,1\right[\). On pose \(Y=|X_1-X_2|\).
[examen/ex0018]
Calculer \(\mathbf{P}(Y=0)\).
Déterminer la loi de \(Y\).
Montrer que \(Y\) est d’espérance finie et calculer \(\mathbf{E}(Y)\).
Montrer que \(Y\) possède un moment d’ordre 2 et calculer \(\mathbf{V}(Y)\).
[planches/ex6332] hec courts S 2021 Soit \(X\) une variable aléatoire à valeurs dans \(\mathbb{N}^*\) admettant une espérance.
[planches/ex6332]
Montrer que \(\displaystyle\frac{1}{X}\) admet une espérance puis montrer que \(\mathbf{E}(X) \mathbf{E}\left(\displaystyle\frac{1}{X}\right) \geqslant 1\). Étudier le cas d’égalité.
[planches/ex3593] mines MP 2018 Soient \(X\), \(Y\) deux variables indépendantes et de même loi à valeurs strictement positives. Montrer que \(\mathbf{E}(X/Y)\geqslant 1\).
[planches/ex3593]
Vous pouvez choisir les informations imprimées pour chaque exercice des PDF : référence interne, taille de la famille